Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ def calculate_microstrip_patch(frequency, permittivity, thickness, tangent_loss)
|
|
16 |
effective_wavelength = wavelength / np.sqrt(permittivity)
|
17 |
patch_length = effective_wavelength / 2
|
18 |
patch_width = wavelength / (2 * np.sqrt(1 + permittivity))
|
19 |
-
return patch_length, patch_width, thickness
|
20 |
|
21 |
def calculate_dipole(frequency):
|
22 |
c = 3e8 # Speed of light in m/s
|
@@ -25,8 +25,7 @@ def calculate_dipole(frequency):
|
|
25 |
return dipole_length
|
26 |
|
27 |
def calculate_s11(frequency):
|
28 |
-
|
29 |
-
s11 = -20 + 5 * np.cos(2 * np.pi * frequency / 10)
|
30 |
return s11
|
31 |
|
32 |
def calculate_directivity_and_gain(frequency):
|
@@ -41,25 +40,11 @@ def radiation_pattern(theta, frequency):
|
|
41 |
# Graphing Functions
|
42 |
def plot_3d_microstrip_patch(patch_length, patch_width, thickness):
|
43 |
fig = go.Figure()
|
44 |
-
# Patch
|
45 |
fig.add_trace(go.Surface(
|
46 |
z=[[0, 0], [0, 0]], x=[[0, patch_width], [0, patch_width]],
|
47 |
y=[[0, 0], [patch_length, patch_length]], colorscale="Viridis", name="Patch"
|
48 |
))
|
49 |
-
|
50 |
-
fig.add_trace(go.Surface(
|
51 |
-
z=[[-thickness, -thickness], [-thickness, -thickness]],
|
52 |
-
x=[[0, patch_width], [0, patch_width]],
|
53 |
-
y=[[0, 0], [patch_length, patch_length]], colorscale="Blues", name="Substrate"
|
54 |
-
))
|
55 |
-
# Ground
|
56 |
-
fig.add_trace(go.Surface(
|
57 |
-
z=[[-thickness, -thickness], [-thickness, -thickness]],
|
58 |
-
x=[[0, patch_width], [0, patch_width]],
|
59 |
-
y=[[0, 0], [patch_length, patch_length]], colorscale="Greens", name="Ground"
|
60 |
-
))
|
61 |
-
fig.update_traces(showscale=False)
|
62 |
-
fig.update_layout(title="3D Microstrip Patch Antenna", showlegend=False)
|
63 |
return fig
|
64 |
|
65 |
def plot_s11_graph(frequencies, s11_values):
|
@@ -72,7 +57,7 @@ def plot_directivity_and_gain(frequencies, directivities, gains):
|
|
72 |
fig = go.Figure()
|
73 |
fig.add_trace(go.Scatter(x=frequencies, y=directivities, mode='lines', name="Directivity"))
|
74 |
fig.add_trace(go.Scatter(x=frequencies, y=gains, mode='lines', name="Realized Gain"))
|
75 |
-
fig.update_layout(title="Frequency vs. Directivity and
|
76 |
xaxis_title="Frequency (GHz)", yaxis_title="Gain (dBi)")
|
77 |
return fig
|
78 |
|
@@ -85,25 +70,26 @@ def plot_radiation_pattern(theta, gain_pattern):
|
|
85 |
# Main Function
|
86 |
def design_antenna(antenna_type, frequency, permittivity, thickness, tangent_loss, impedance):
|
87 |
frequency_hz = frequency * 1e9
|
88 |
-
frequencies = np.linspace(frequency - 0.5, frequency + 0.5, 100)
|
89 |
-
|
90 |
if antenna_type == "Microstrip Patch":
|
91 |
-
patch_length, patch_width, thickness = calculate_microstrip_patch(
|
|
|
|
|
92 |
s11_values = [calculate_s11(f) for f in frequencies]
|
93 |
directivities, gains = zip(*[calculate_directivity_and_gain(f) for f in frequencies])
|
94 |
theta = np.linspace(-180, 180, 360)
|
95 |
gain_pattern = radiation_pattern(theta, frequency_hz)
|
96 |
-
|
97 |
-
|
98 |
-
directivity_gain_graph = plot_directivity_and_gain(frequencies, directivities, gains)
|
99 |
radiation_graph = plot_radiation_pattern(theta, gain_pattern)
|
100 |
antenna_3d = plot_3d_microstrip_patch(patch_length, patch_width, thickness)
|
101 |
-
|
102 |
output = (
|
103 |
f"Design Type: Microstrip Patch Antenna\n"
|
104 |
f"Operating Frequency: {frequency:.2f} GHz\n"
|
105 |
-
f"
|
106 |
-
f"
|
107 |
f"Input Impedance: {impedance} Ohms"
|
108 |
)
|
109 |
elif antenna_type == "Dipole":
|
@@ -112,17 +98,15 @@ def design_antenna(antenna_type, frequency, permittivity, thickness, tangent_los
|
|
112 |
directivities, gains = zip(*[calculate_directivity_and_gain(f) for f in frequencies])
|
113 |
theta = np.linspace(-180, 180, 360)
|
114 |
gain_pattern = radiation_pattern(theta, frequency_hz)
|
115 |
-
|
116 |
-
|
117 |
-
directivity_gain_graph = plot_directivity_and_gain(frequencies, directivities, gains)
|
118 |
radiation_graph = plot_radiation_pattern(theta, gain_pattern)
|
119 |
-
antenna_3d = None #
|
120 |
-
|
121 |
output = (
|
122 |
f"Design Type: Dipole Antenna\n"
|
123 |
f"Operating Frequency: {frequency:.2f} GHz\n"
|
124 |
-
f"
|
125 |
-
f"Dipole Length: {dipole_length:.2f} m\n"
|
126 |
f"Input Impedance: {impedance} Ohms"
|
127 |
)
|
128 |
|
@@ -130,12 +114,12 @@ def design_antenna(antenna_type, frequency, permittivity, thickness, tangent_los
|
|
130 |
|
131 |
# Gradio Interface
|
132 |
with gr.Blocks() as demo:
|
133 |
-
gr.Markdown("# Antenna Design Tool
|
134 |
antenna_type = gr.Dropdown(["Microstrip Patch", "Dipole"], label="Select Antenna Type")
|
135 |
frequency = gr.Slider(1.0, 10.0, step=0.1, label="Operating Frequency (GHz)")
|
136 |
permittivity = gr.Number(value=4.4, label="Substrate Permittivity")
|
137 |
thickness = gr.Number(value=0.01, label="Substrate Thickness (m)")
|
138 |
-
tangent_loss = gr.Number(value=0.02, label="
|
139 |
impedance = gr.Dropdown([50, 73], label="Input Impedance (Ohms)", value=50)
|
140 |
design_button = gr.Button("Design Antenna")
|
141 |
output_text = gr.Textbox(label="Design Results")
|
|
|
16 |
effective_wavelength = wavelength / np.sqrt(permittivity)
|
17 |
patch_length = effective_wavelength / 2
|
18 |
patch_width = wavelength / (2 * np.sqrt(1 + permittivity))
|
19 |
+
return patch_length, patch_width, thickness, tangent_loss
|
20 |
|
21 |
def calculate_dipole(frequency):
|
22 |
c = 3e8 # Speed of light in m/s
|
|
|
25 |
return dipole_length
|
26 |
|
27 |
def calculate_s11(frequency):
|
28 |
+
s11 = -20 + 5 * np.cos(2 * np.pi * frequency / 10) # Mock S11 values
|
|
|
29 |
return s11
|
30 |
|
31 |
def calculate_directivity_and_gain(frequency):
|
|
|
40 |
# Graphing Functions
|
41 |
def plot_3d_microstrip_patch(patch_length, patch_width, thickness):
|
42 |
fig = go.Figure()
|
|
|
43 |
fig.add_trace(go.Surface(
|
44 |
z=[[0, 0], [0, 0]], x=[[0, patch_width], [0, patch_width]],
|
45 |
y=[[0, 0], [patch_length, patch_length]], colorscale="Viridis", name="Patch"
|
46 |
))
|
47 |
+
fig.update_layout(title="3D Microstrip Patch Antenna")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return fig
|
49 |
|
50 |
def plot_s11_graph(frequencies, s11_values):
|
|
|
57 |
fig = go.Figure()
|
58 |
fig.add_trace(go.Scatter(x=frequencies, y=directivities, mode='lines', name="Directivity"))
|
59 |
fig.add_trace(go.Scatter(x=frequencies, y=gains, mode='lines', name="Realized Gain"))
|
60 |
+
fig.update_layout(title="Frequency vs. Directivity and Gain",
|
61 |
xaxis_title="Frequency (GHz)", yaxis_title="Gain (dBi)")
|
62 |
return fig
|
63 |
|
|
|
70 |
# Main Function
|
71 |
def design_antenna(antenna_type, frequency, permittivity, thickness, tangent_loss, impedance):
|
72 |
frequency_hz = frequency * 1e9
|
73 |
+
frequencies = np.linspace(frequency - 0.5, frequency + 0.5, 100) * 1e9 # Adjust to Hz
|
74 |
+
|
75 |
if antenna_type == "Microstrip Patch":
|
76 |
+
patch_length, patch_width, thickness, tangent_loss = calculate_microstrip_patch(
|
77 |
+
frequency_hz, permittivity, thickness, tangent_loss
|
78 |
+
)
|
79 |
s11_values = [calculate_s11(f) for f in frequencies]
|
80 |
directivities, gains = zip(*[calculate_directivity_and_gain(f) for f in frequencies])
|
81 |
theta = np.linspace(-180, 180, 360)
|
82 |
gain_pattern = radiation_pattern(theta, frequency_hz)
|
83 |
+
s11_graph = plot_s11_graph(frequencies / 1e9, s11_values) # Convert to GHz
|
84 |
+
directivity_gain_graph = plot_directivity_and_gain(frequencies / 1e9, directivities, gains)
|
|
|
85 |
radiation_graph = plot_radiation_pattern(theta, gain_pattern)
|
86 |
antenna_3d = plot_3d_microstrip_patch(patch_length, patch_width, thickness)
|
87 |
+
|
88 |
output = (
|
89 |
f"Design Type: Microstrip Patch Antenna\n"
|
90 |
f"Operating Frequency: {frequency:.2f} GHz\n"
|
91 |
+
f"Patch Dimensions: {patch_length:.3f} m x {patch_width:.3f} m x {thickness:.3f} m\n"
|
92 |
+
f"Tangent Loss: {tangent_loss}\n"
|
93 |
f"Input Impedance: {impedance} Ohms"
|
94 |
)
|
95 |
elif antenna_type == "Dipole":
|
|
|
98 |
directivities, gains = zip(*[calculate_directivity_and_gain(f) for f in frequencies])
|
99 |
theta = np.linspace(-180, 180, 360)
|
100 |
gain_pattern = radiation_pattern(theta, frequency_hz)
|
101 |
+
s11_graph = plot_s11_graph(frequencies / 1e9, s11_values) # Convert to GHz
|
102 |
+
directivity_gain_graph = plot_directivity_and_gain(frequencies / 1e9, directivities, gains)
|
|
|
103 |
radiation_graph = plot_radiation_pattern(theta, gain_pattern)
|
104 |
+
antenna_3d = None # No 3D visualization for dipole
|
105 |
+
|
106 |
output = (
|
107 |
f"Design Type: Dipole Antenna\n"
|
108 |
f"Operating Frequency: {frequency:.2f} GHz\n"
|
109 |
+
f"Dipole Length: {dipole_length:.3f} m\n"
|
|
|
110 |
f"Input Impedance: {impedance} Ohms"
|
111 |
)
|
112 |
|
|
|
114 |
|
115 |
# Gradio Interface
|
116 |
with gr.Blocks() as demo:
|
117 |
+
gr.Markdown("# Antenna Design Tool")
|
118 |
antenna_type = gr.Dropdown(["Microstrip Patch", "Dipole"], label="Select Antenna Type")
|
119 |
frequency = gr.Slider(1.0, 10.0, step=0.1, label="Operating Frequency (GHz)")
|
120 |
permittivity = gr.Number(value=4.4, label="Substrate Permittivity")
|
121 |
thickness = gr.Number(value=0.01, label="Substrate Thickness (m)")
|
122 |
+
tangent_loss = gr.Number(value=0.02, label="Tangent Loss (tan δ)", step=0.01)
|
123 |
impedance = gr.Dropdown([50, 73], label="Input Impedance (Ohms)", value=50)
|
124 |
design_button = gr.Button("Design Antenna")
|
125 |
output_text = gr.Textbox(label="Design Results")
|