Spaces:
Runtime error
Runtime error
Szabó Gergő
commited on
Commit
•
2ecc574
1
Parent(s):
19cfb7e
triples package
Browse files- examples/relation.py +12 -12
- resources/triples.py +125 -0
examples/relation.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
import spacy
|
4 |
-
import sys
|
5 |
import pandas as pd
|
6 |
-
from spacy import displacy
|
7 |
|
8 |
-
|
9 |
-
import triples
|
10 |
|
11 |
nlp = spacy.load("hu_core_news_lg")
|
12 |
|
@@ -41,14 +38,17 @@ def process(text: str) -> pd.DataFrame:
|
|
41 |
|
42 |
return pd.DataFrame(relation_list, columns=['Subject', 'Verb', 'Object'])
|
43 |
|
44 |
-
EXAMPLES = ["
|
45 |
-
"
|
46 |
-
"
|
47 |
-
"
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
52 |
|
53 |
demo = gr.Interface(
|
54 |
fn=process,
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
import spacy
|
|
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
+
from resources import triples
|
|
|
7 |
|
8 |
nlp = spacy.load("hu_core_news_lg")
|
9 |
|
|
|
38 |
|
39 |
return pd.DataFrame(relation_list, columns=['Subject', 'Verb', 'Object'])
|
40 |
|
41 |
+
EXAMPLES = ["Anna éppen most házat épít magának.",
|
42 |
+
"András főzni fog, ha haza ért.",
|
43 |
+
"Jéghideg narancslevet fogok kortyolni Mallorca homokos partján.",
|
44 |
+
"Júliska fagyit fog árulni.",
|
45 |
+
"Einstein megmutatta, hogy hogyan kell házat építeni.",
|
46 |
+
"Vespucci 1497 és 1504 között legalább két felfedező úton vett részt.",
|
47 |
+
"Einstein megállapította, hogy az atomokra hasonló energiaeloszlás lehet érvényes.",
|
48 |
+
"Hawking úgy nyilatkozott, hogy a felfedezései az élete legizgalmasabb eseményei voltak.",
|
49 |
+
"Einstein megmutatta, ha feltételezi, hogy a fény valóban csak diszkrét csomagokban terjed, akkor meg tudja magyarázni a fényelektromos jelenség furcsa tulajdonságait."]
|
50 |
+
|
51 |
+
# process(EXAMPLES[4])
|
52 |
|
53 |
demo = gr.Interface(
|
54 |
fn=process,
|
resources/triples.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Triples
|
3 |
+
-------
|
4 |
+
|
5 |
+
:mod:`textacy.extract.triples`: Extract structured triples from a document or sentence
|
6 |
+
through rule-based pattern-matching of the annotated tokens.
|
7 |
+
"""
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
import collections
|
11 |
+
from operator import attrgetter
|
12 |
+
from typing import Iterable, List, Tuple
|
13 |
+
|
14 |
+
from spacy.symbols import (
|
15 |
+
AUX, VERB,
|
16 |
+
agent, attr, aux, auxpass, csubj, csubjpass, dobj, neg, nsubj, nsubjpass, obj, pobj, xcomp,
|
17 |
+
)
|
18 |
+
from spacy.tokens import Span, Token
|
19 |
+
|
20 |
+
from textacy import types
|
21 |
+
|
22 |
+
|
23 |
+
_NOMINAL_SUBJ_DEPS = {nsubj, nsubjpass}
|
24 |
+
_CLAUSAL_SUBJ_DEPS = {csubj, csubjpass}
|
25 |
+
_ACTIVE_SUBJ_DEPS = {csubj, nsubj}
|
26 |
+
_VERB_MODIFIER_DEPS = {aux, auxpass, neg}
|
27 |
+
|
28 |
+
SVOTriple: Tuple[List[Token], List[Token], List[Token]] = collections.namedtuple(
|
29 |
+
"SVOTriple", ["subject", "verb", "object"]
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def subject_verb_object_triples(doclike: types.DocLike) -> Iterable[SVOTriple]:
|
34 |
+
"""
|
35 |
+
Extract an ordered sequence of subject-verb-object triples from a document
|
36 |
+
or sentence.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
doclike
|
40 |
+
|
41 |
+
Yields:
|
42 |
+
Next SVO triple as (subject, verb, object), in approximate order of appearance.
|
43 |
+
"""
|
44 |
+
if isinstance(doclike, Span):
|
45 |
+
sents = [doclike]
|
46 |
+
else:
|
47 |
+
sents = doclike.sents
|
48 |
+
|
49 |
+
for sent in sents:
|
50 |
+
# connect subjects/objects to direct verb heads
|
51 |
+
# and expand them to include conjuncts, compound nouns, ...
|
52 |
+
verb_sos = collections.defaultdict(lambda: collections.defaultdict(set))
|
53 |
+
for tok in sent:
|
54 |
+
head = tok.head
|
55 |
+
# ensure entry for all verbs, even if empty
|
56 |
+
# to catch conjugate verbs without direct subject/object deps
|
57 |
+
if tok.pos == VERB:
|
58 |
+
_ = verb_sos[tok]
|
59 |
+
# nominal subject of active or passive verb
|
60 |
+
if tok.dep in _NOMINAL_SUBJ_DEPS:
|
61 |
+
if head.pos == VERB:
|
62 |
+
verb_sos[head]["subjects"].update(expand_noun(tok))
|
63 |
+
# clausal subject of active or passive verb
|
64 |
+
elif tok.dep in _CLAUSAL_SUBJ_DEPS:
|
65 |
+
if head.pos == VERB:
|
66 |
+
verb_sos[head]["subjects"].update(tok.subtree)
|
67 |
+
# nominal direct object of transitive verb
|
68 |
+
elif tok.dep == obj:
|
69 |
+
if head.pos == VERB:
|
70 |
+
verb_sos[head]["objects"].update(expand_noun(tok))
|
71 |
+
# prepositional object acting as agent of passive verb
|
72 |
+
elif tok.dep == pobj:
|
73 |
+
if head.dep == agent and head.head.pos == VERB:
|
74 |
+
verb_sos[head.head]["objects"].update(expand_noun(tok))
|
75 |
+
# open clausal complement, but not as a secondary predicate
|
76 |
+
elif tok.dep == xcomp:
|
77 |
+
if (
|
78 |
+
head.pos == VERB
|
79 |
+
and not any(child.dep == obj for child in head.children)
|
80 |
+
):
|
81 |
+
# TODO: just the verb, or the whole tree?
|
82 |
+
# verb_sos[verb]["objects"].update(expand_verb(tok))
|
83 |
+
verb_sos[head]["objects"].update(tok.subtree)
|
84 |
+
# fill in any indirect relationships connected via verb conjuncts
|
85 |
+
for verb, so_dict in verb_sos.items():
|
86 |
+
conjuncts = verb.conjuncts
|
87 |
+
if so_dict.get("subjects"):
|
88 |
+
for conj in conjuncts:
|
89 |
+
conj_so_dict = verb_sos.get(conj)
|
90 |
+
if conj_so_dict and not conj_so_dict.get("subjects"):
|
91 |
+
conj_so_dict["subjects"].update(so_dict["subjects"])
|
92 |
+
if not so_dict.get("objects"):
|
93 |
+
so_dict["objects"].update(
|
94 |
+
obj
|
95 |
+
for conj in conjuncts
|
96 |
+
for obj in verb_sos.get(conj, {}).get("objects", [])
|
97 |
+
)
|
98 |
+
# expand verbs and restructure into svo triples
|
99 |
+
for verb, so_dict in verb_sos.items():
|
100 |
+
if so_dict["subjects"] and so_dict["objects"]:
|
101 |
+
yield SVOTriple(
|
102 |
+
subject=sorted(so_dict["subjects"], key=attrgetter("i")),
|
103 |
+
verb=sorted(expand_verb(verb), key=attrgetter("i")),
|
104 |
+
object=sorted(so_dict["objects"], key=attrgetter("i")),
|
105 |
+
)
|
106 |
+
|
107 |
+
def expand_noun(tok: Token) -> List[Token]:
|
108 |
+
"""Expand a noun token to include all associated conjunct and compound nouns."""
|
109 |
+
tok_and_conjuncts = [tok] + list(tok.conjuncts)
|
110 |
+
compounds = [
|
111 |
+
child
|
112 |
+
for tc in tok_and_conjuncts
|
113 |
+
for child in tc.children
|
114 |
+
# TODO: why doesn't compound import from spacy.symbols?
|
115 |
+
if child.dep_ == "compound"
|
116 |
+
]
|
117 |
+
return tok_and_conjuncts + compounds
|
118 |
+
|
119 |
+
|
120 |
+
def expand_verb(tok: Token) -> List[Token]:
|
121 |
+
"""Expand a verb token to include all associated auxiliary and negation tokens."""
|
122 |
+
verb_modifiers = [
|
123 |
+
child for child in tok.children if child.dep in _VERB_MODIFIER_DEPS
|
124 |
+
]
|
125 |
+
return [tok] + verb_modifiers
|