pmf_with_gis / app.py
hushell's picture
tweaks
ec3f141
raw
history blame
5.14 kB
import os
import numpy as np
import time
import random
import torch
import torchvision.transforms as transforms
import gradio as gr
import matplotlib.pyplot as plt
from models import get_model
from dotmap import DotMap
from PIL import Image
#os.environ['TERM'] = 'linux'
#os.environ['TERMINFO'] = '/etc/terminfo'
# args
args = DotMap()
args.deploy = 'vanilla'
args.arch = 'dino_small_patch16'
args.resume = 'https://huggingface.co/hushell/pmf_dinosmall_lr1e-4/resolve/main/best_converted.pth'
args.api_key = 'AIzaSyAFkOGnXhy-2ZB0imDvNNqf2rHb98vR_qY'
args.cx = '06d75168141bc47f1'
# model
device = 'cpu' #torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = get_model(args)
model.to(device)
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=True)
# image transforms
def test_transform():
def _convert_image_to_rgb(im):
return im.convert('RGB')
return transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
_convert_image_to_rgb,
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
preprocess = test_transform()
@torch.no_grad()
def denormalize(x, mean, std):
# 3, H, W
t = x.clone()
t.mul_(std).add_(mean)
return torch.clamp(t, 0, 1)
# Google image search
from google_images_search import GoogleImagesSearch
class MyGIS(GoogleImagesSearch):
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
return
# define search params
# option for commonly used search param are shown below for easy reference.
# For param marked with '##':
# - Multiselect is currently not feasible. Choose ONE option only
# - This param can also be omitted from _search_params if you do not wish to define any value
_search_params = {
'q': '...',
'num': 10,
'fileType': 'png', #'jpg|gif|png',
'rights': 'cc_publicdomain', #'cc_publicdomain|cc_attribute|cc_sharealike|cc_noncommercial|cc_nonderived',
#'safe': 'active|high|medium|off|safeUndefined', ##
'imgType': 'photo', #'clipart|face|lineart|stock|photo|animated|imgTypeUndefined', ##
#'imgSize': 'huge|icon|large|medium|small|xlarge|xxlarge|imgSizeUndefined', ##
#'imgDominantColor': 'black|blue|brown|gray|green|orange|pink|purple|red|teal|white|yellow|imgDominantColorUndefined', ##
'imgColorType': 'color', #'color|gray|mono|trans|imgColorTypeUndefined' ##
}
# Gradio UI
def inference(query, labels, n_supp=10):
'''
query: PIL image
labels: list of class names
'''
labels = labels.split(',')
n_supp = int(n_supp)
fig, axs = plt.subplots(len(labels), n_supp, figsize=(n_supp*4, len(labels)*4))
with torch.no_grad():
# query image
query = preprocess(query).unsqueeze(0).unsqueeze(0).to(device) # (1, 1, 3, H, W)
supp_x = []
supp_y = []
# search support images
for idx, y in enumerate(labels):
gis = GoogleImagesSearch(args.api_key, args.cx)
_search_params['q'] = y
_search_params['num'] = n_supp
gis.search(search_params=_search_params, custom_image_name='my_image')
gis._custom_image_name = 'my_image'
for j, x in enumerate(gis.results()):
x.download('./')
x_im = Image.open(x.path)
# vis
axs[idx, j].imshow(x_im)
axs[idx, j].set_title(f'{y}{j}:{x.url}')
axs[idx, j].axis('off')
x_im = preprocess(x_im) # (3, H, W)
supp_x.append(x_im)
supp_y.append(idx)
print('Searching for support images is done.')
supp_x = torch.stack(supp_x, dim=0).unsqueeze(0).to(device) # (1, n_supp*n_labels, 3, H, W)
supp_y = torch.tensor(supp_y).long().unsqueeze(0).to(device) # (1, n_supp*n_labels)
with torch.cuda.amp.autocast(True):
output = model(supp_x, supp_y, query) # (1, 1, n_labels)
probs = output.softmax(dim=-1).detach().cpu().numpy()
return {k: float(v) for k, v in zip(labels, probs[0, 0])}, fig
# DEBUG
#query = Image.open('../labrador-puppy.jpg')
##labels = 'dog, cat'
#labels = 'girl, boy'
#output = inference(query, labels, n_supp=2)
#print(output)
gr.Interface(fn=inference,
inputs=[
gr.inputs.Image(label="Image to classify", type="pil"),
gr.inputs.Textbox(lines=1, label="Class hypotheses:", placeholder="Enter class names separated by ','",),
gr.inputs.Slider(minimum=2, maximum=10, step=1, label="Number of support examples from Google")
],
theme="grass",
outputs=[
gr.outputs.Label(label="Predicted class probabilities"),
gr.outputs.Image(type='plot', label="Support examples from Google image search"),
],
description="PMF few-shot learning with Google image search").launch(debug=True)