Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import numpy as np | |
from transformers import DPTForDepthEstimation, DPTImageProcessor | |
import gradio as gr | |
import torch.nn.utils.prune as prune | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float32) | |
model.eval() | |
# Apply global unstructured pruning | |
parameters_to_prune = [ | |
(module, "weight") for module in filter(lambda m: isinstance(m, (torch.nn.Conv2d, torch.nn.Linear)), model.modules()) | |
] | |
prune.global_unstructured( | |
parameters_to_prune, | |
pruning_method=prune.L1Unstructured, | |
amount=0.2, # Prune 20% of weights | |
) | |
for module, _ in parameters_to_prune: | |
prune.remove(module, "weight") | |
model = torch.quantization.quantize_dynamic( | |
model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8 | |
) | |
model = model.to(device) | |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") | |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO) | |
color_map = torch.from_numpy(color_map).to(device) | |
def preprocess_image(image): | |
image = cv2.resize(image, (128, 72)) | |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device) | |
return image / 255.0 | |
def plot_depth_map(depth_map, original_image): | |
fig = plt.figure(figsize=(16, 9)) | |
ax = fig.add_subplot(111, projection='3d') | |
x, y = np.meshgrid(range(depth_map.shape[1]), range(depth_map.shape[0])) | |
# Resize original image to match depth map dimensions | |
original_image_resized = cv2.resize(original_image, (depth_map.shape[1], depth_map.shape[0])) | |
colors = original_image_resized.reshape(depth_map.shape[0], depth_map.shape[1], 3) / 255.0 | |
ax.plot_surface(x, y, depth_map, facecolors=colors, shade=False) | |
ax.set_zlim(0, 1) | |
# Adjust the view to look down at an angle from a higher position | |
ax.view_init(elev=45, azim=180) # 180-degree rotation and a higher angle | |
plt.axis('off') | |
plt.close(fig) | |
fig.canvas.draw() | |
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) | |
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
return img | |
def process_frame(image): | |
if image is None: | |
return None | |
preprocessed = preprocess_image(image) | |
predicted_depth = model(preprocessed).predicted_depth | |
depth_map = predicted_depth.squeeze().cpu().numpy() | |
# Normalize depth map | |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) | |
# Convert BGR to RGB if necessary | |
if image.shape[2] == 3: # Check if it's a color image | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
return plot_depth_map(depth_map, image) | |
interface = gr.Interface( | |
fn=process_frame, | |
inputs=gr.Image(sources="webcam", streaming=True), | |
outputs="image", | |
live=True | |
) | |
interface.launch() |