|
def get_pdf_text(pdf_docs):
|
|
text = ""
|
|
for pdf in pdf_docs:
|
|
pdf_reader = PdfReader(pdf)
|
|
for page in pdf_reader.pages:
|
|
text += page.extract_text()
|
|
return text
|
|
|
|
|
|
def get_text_chunks(text):
|
|
text_splitter= RecursiveCharacterTextSplitter(
|
|
chunk_size=10000,
|
|
chunk_overlap=1000,
|
|
|
|
)
|
|
chunks=text_splitter.split_text(text)
|
|
return chunks
|
|
|
|
|
|
def get_vector_store(text_chunks):
|
|
|
|
embeddings = GoogleGenerativeAIEmbeddings(model='models/embedding-001')
|
|
vector_store = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
|
vector_store.save_local("faiss_index")
|
|
|
|
|
|
def get_conversation_chain():
|
|
prompt_template="""Answer the query as detailed as possible from the provided context, make sure to provide all the details, if answeris not in
|
|
the provided context, just say, "Answer is not available in the provided documents", don't provide the wrong answer:\n {context}? \n Query: {query}? \n
|
|
Answer:
|
|
"""
|
|
|
|
model=ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
|
prompt=PromptTemplate(template=prompt_template, input_variables=["context", "query"])
|
|
|
|
chain=load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
|
return chain
|
|
|
|
def user_input(user_question):
|
|
|
|
embeddings = GoogleGenerativeAIEmbeddings(model='models/embedding-001')
|
|
|
|
|
|
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
|
docs = new_db.similarity_search(user_question)
|
|
|
|
chain=get_conversation_chain()
|
|
|
|
response = chain(
|
|
{"input_documents": docs, "question": user_question}
|
|
, return_only_outputs=True)
|
|
|
|
print(response)
|
|
st.write("Reply: ", response["output_text"])
|
|
|
|
|
|
def main():
|
|
st.set_page_config(page_title="PDF Chatbot")
|
|
st.header("PDF Chatbot made with ❤")
|
|
|
|
user_question = st.text_input("Ask a question about your documents:")
|
|
|
|
if user_question:
|
|
user_input(user_question)
|
|
|
|
with st.sidebar:
|
|
st.title("Menu:")
|
|
pdf_docs = st.file_uploader(
|
|
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
|
if st.button("Submit & Process"):
|
|
with st.spinner("Ruko Padh raha hu..."):
|
|
raw_text = get_pdf_text(pdf_docs)
|
|
text_chunks = get_text_chunks(raw_text)
|
|
get_vector_store(text_chunks)
|
|
st.success("Saare documents padh liya. Ab swaal pucho 😤")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main() |