|
import os |
|
import streamlit as st |
|
from PyPDF2 import PdfReader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
|
|
from langchain.vectorstores import FAISS |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.prompts import PromptTemplate |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
|
|
model_name = "mixedbread-ai/mxbai-embed-2d-large-v1" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) |
|
|
|
|
|
|
|
def get_pdf_text(pdf_docs): |
|
text = "" |
|
for pdf in pdf_docs: |
|
pdf_reader = PdfReader(pdf) |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
return text |
|
|
|
|
|
def get_text_chunks(text): |
|
text_splitter= RecursiveCharacterTextSplitter( |
|
chunk_size=10000, |
|
chunk_overlap=1000, |
|
|
|
) |
|
chunks=text_splitter.split_text(text) |
|
return chunks |
|
|
|
|
|
def get_vector_store(text_chunks): |
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") |
|
vector_store = FAISS.from_texts(texts=text_chunks, embedding=embeddings) |
|
vector_store.save_local("faiss_index") |
|
|
|
|
|
|
|
|
|
def chat_with_huggingface(context, query): |
|
prompt_template = """ |
|
Answer the query as detailed as possible from the provided context. |
|
If the answer is not in the context, just say, "Answer is not available in the provided documents". |
|
Context: {context} |
|
Query: {query} |
|
Answer: |
|
""" |
|
inputs = tokenizer(prompt_template, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_length=500, temperature=0.3) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
def get_conversation_chain(): |
|
def huggingface_chain(inputs): |
|
context = inputs["input_documents"][0].page_content |
|
query = inputs["question"] |
|
return {"output_text": chat_with_huggingface(context, query)} |
|
|
|
return huggingface_chain |
|
|
|
def user_input(user_question): |
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") |
|
|
|
|
|
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) |
|
docs = new_db.similarity_search(user_question) |
|
|
|
chain=get_conversation_chain() |
|
|
|
response = chain( |
|
{"input_documents": docs, "question": user_question}) |
|
|
|
print(response) |
|
st.write("Reply: ", response["output_text"]) |
|
|
|
|
|
def main(): |
|
st.set_page_config(page_title="PDF Chatbot") |
|
st.header("PDF Chatbot made for Pooja") |
|
|
|
user_question = st.text_input("Puchiye kuch apne documents se:") |
|
|
|
if user_question: |
|
user_input(user_question) |
|
|
|
with st.sidebar: |
|
st.title("Menu:") |
|
pdf_docs = st.file_uploader( |
|
"Apne PDFs yaha pe upload karo then click on 'Process'", accept_multiple_files=True) |
|
if st.button("Submit & Process"): |
|
with st.spinner("Ruko Padh raha hu..."): |
|
raw_text = get_pdf_text(pdf_docs) |
|
text_chunks = get_text_chunks(raw_text) |
|
get_vector_store(text_chunks) |
|
st.success("Saare documents padh liya. Ab swaal pucho 😤") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |