davidlee1102 commited on
Commit
25d6b2b
1 Parent(s): 86de3ff
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
app.py CHANGED
@@ -12,7 +12,7 @@ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png
12
 
13
 
14
  # Load your TensorFlow model
15
- # model = tf.keras.models.load_model("model.h5")
16
 
17
 
18
  def preprocess_image(image, target_size=(224, 224)):
@@ -24,18 +24,17 @@ def preprocess_image(image, target_size=(224, 224)):
24
  col1, col2 = st.columns(2)
25
 
26
  if uploaded_file is not None:
27
- image = Image.open(uploaded_file)
28
  col1.image(image, caption="Uploaded Image", use_column_width=True)
29
 
30
  if st.button("Classify"):
31
  preprocessed_image = preprocess_image(image)
32
- # predictions = model.predict(preprocessed_image)
33
- # top_prediction = np.argmax(predictions[0])
34
 
35
- # class_labels = get_class_labels()
36
- # predicted_class = class_labels[top_prediction]
37
 
38
- col2.write(f"Predicted class: ") # {predicted_class}
39
  else:
40
  col1.write("Upload an image to see the classification")
41
  col2.write("Prediction will appear here")
 
12
 
13
 
14
  # Load your TensorFlow model
15
+ model = tf.keras.models.load_model("model/kd_model")
16
 
17
 
18
  def preprocess_image(image, target_size=(224, 224)):
 
24
  col1, col2 = st.columns(2)
25
 
26
  if uploaded_file is not None:
27
+ image = Image.open(uploaded_file).convert('RGB')
28
  col1.image(image, caption="Uploaded Image", use_column_width=True)
29
 
30
  if st.button("Classify"):
31
  preprocessed_image = preprocess_image(image)
32
+ predictions = model.predict(preprocessed_image)
33
+ top_prediction = np.argmax(predictions[0])
34
 
35
+ predicted_class = LABELS[top_prediction]
 
36
 
37
+ col2.write(f"Predicted class: {predicted_class}")
38
  else:
39
  col1.write("Upload an image to see the classification")
40
  col2.write("Prediction will appear here")
model/kd_model/fingerprint.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:690937eedceddf7e2a78dee2089ec5f6a349d38376e98d8d04ba16160f640b70
3
+ size 56
model/kd_model/keras_metadata.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bfa0da94b6ee8b5f2b48ac1b84b18dfc63125d9b407b6962ce0b73b5c3d9f7a
3
+ size 39768
model/kd_model/saved_model.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c06da34fdfeb3d6ba8b93f3ce94e7bc563b37a89bf161f99093fea9fce949587
3
+ size 379191
model/kd_model/variables/variables.index ADDED
Binary file (2.41 kB). View file