Spaces:
Build error
Build error
import os | |
from PIL import Image | |
from typing import Union | |
import numpy as np | |
import cv2 | |
from diffusers.image_processor import VaeImageProcessor | |
import torch | |
from model.SCHP import SCHP # type: ignore | |
from model.DensePose import DensePose # type: ignore | |
DENSE_INDEX_MAP = { | |
"background": [0], | |
"torso": [1, 2], | |
"right hand": [3], | |
"left hand": [4], | |
"right foot": [5], | |
"left foot": [6], | |
"right thigh": [7, 9], | |
"left thigh": [8, 10], | |
"right leg": [11, 13], | |
"left leg": [12, 14], | |
"left big arm": [15, 17], | |
"right big arm": [16, 18], | |
"left forearm": [19, 21], | |
"right forearm": [20, 22], | |
"face": [23, 24], | |
"thighs": [7, 8, 9, 10], | |
"legs": [11, 12, 13, 14], | |
"hands": [3, 4], | |
"feet": [5, 6], | |
"big arms": [15, 16, 17, 18], | |
"forearms": [19, 20, 21, 22], | |
} | |
ATR_MAPPING = { | |
'Background': 0, 'Hat': 1, 'Hair': 2, 'Sunglasses': 3, | |
'Upper-clothes': 4, 'Skirt': 5, 'Pants': 6, 'Dress': 7, | |
'Belt': 8, 'Left-shoe': 9, 'Right-shoe': 10, 'Face': 11, | |
'Left-leg': 12, 'Right-leg': 13, 'Left-arm': 14, 'Right-arm': 15, | |
'Bag': 16, 'Scarf': 17 | |
} | |
LIP_MAPPING = { | |
'Background': 0, 'Hat': 1, 'Hair': 2, 'Glove': 3, | |
'Sunglasses': 4, 'Upper-clothes': 5, 'Dress': 6, 'Coat': 7, | |
'Socks': 8, 'Pants': 9, 'Jumpsuits': 10, 'Scarf': 11, | |
'Skirt': 12, 'Face': 13, 'Left-arm': 14, 'Right-arm': 15, | |
'Left-leg': 16, 'Right-leg': 17, 'Left-shoe': 18, 'Right-shoe': 19 | |
} | |
PROTECT_BODY_PARTS = { | |
'upper': ['Left-leg', 'Right-leg'], | |
'lower': ['Right-arm', 'Left-arm', 'Face'], | |
'overall': [], | |
'inner': ['Left-leg', 'Right-leg'], | |
'outer': ['Left-leg', 'Right-leg'], | |
} | |
PROTECT_CLOTH_PARTS = { | |
'upper': { | |
'ATR': ['Skirt', 'Pants'], | |
'LIP': ['Skirt', 'Pants'] | |
}, | |
'lower': { | |
'ATR': ['Upper-clothes'], | |
'LIP': ['Upper-clothes', 'Coat'] | |
}, | |
'overall': { | |
'ATR': [], | |
'LIP': [] | |
}, | |
'inner': { | |
'ATR': ['Dress', 'Coat', 'Skirt', 'Pants'], | |
'LIP': ['Dress', 'Coat', 'Skirt', 'Pants', 'Jumpsuits'] | |
}, | |
'outer': { | |
'ATR': ['Dress', 'Pants', 'Skirt'], | |
'LIP': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Jumpsuits'] | |
} | |
} | |
MASK_CLOTH_PARTS = { | |
'upper': ['Upper-clothes', 'Coat', 'Dress', 'Jumpsuits'], | |
'lower': ['Pants', 'Skirt', 'Dress', 'Jumpsuits'], | |
'overall': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Coat', 'Jumpsuits'], | |
'inner': ['Upper-clothes'], | |
'outer': ['Coat',] | |
} | |
MASK_DENSE_PARTS = { | |
'upper': ['torso', 'big arms', 'forearms'], | |
'lower': ['thighs', 'legs'], | |
'overall': ['torso', 'thighs', 'legs', 'big arms', 'forearms'], | |
'inner': ['torso'], | |
'outer': ['torso', 'big arms', 'forearms'] | |
} | |
schp_public_protect_parts = ['Hat', 'Hair', 'Sunglasses', 'Left-shoe', 'Right-shoe', 'Bag', 'Glove', 'Scarf'] | |
schp_protect_parts = { | |
'upper': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits'], | |
'lower': ['Left-arm', 'Right-arm', 'Upper-clothes', 'Coat'], | |
'overall': [], | |
'inner': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits', 'Coat'], | |
'outer': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits', 'Upper-clothes'] | |
} | |
schp_mask_parts = { | |
'upper': ['Upper-clothes', 'Dress', 'Coat', 'Jumpsuits'], | |
'lower': ['Pants', 'Skirt', 'Dress', 'Jumpsuits', 'socks'], | |
'overall': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Coat', 'Jumpsuits', 'socks'], | |
'inner': ['Upper-clothes'], | |
'outer': ['Coat',] | |
} | |
dense_mask_parts = { | |
'upper': ['torso', 'big arms', 'forearms'], | |
'lower': ['thighs', 'legs'], | |
'overall': ['torso', 'thighs', 'legs', 'big arms', 'forearms'], | |
'inner': ['torso'], | |
'outer': ['torso', 'big arms', 'forearms'] | |
} | |
def vis_mask(image, mask): | |
image = np.array(image).astype(np.uint8) | |
mask = np.array(mask).astype(np.uint8) | |
mask[mask > 127] = 255 | |
mask[mask <= 127] = 0 | |
mask = np.expand_dims(mask, axis=-1) | |
mask = np.repeat(mask, 3, axis=-1) | |
mask = mask / 255 | |
return Image.fromarray((image * (1 - mask)).astype(np.uint8)) | |
def part_mask_of(part: Union[str, list], | |
parse: np.ndarray, mapping: dict): | |
if isinstance(part, str): | |
part = [part] | |
mask = np.zeros_like(parse) | |
for _ in part: | |
if _ not in mapping: | |
continue | |
if isinstance(mapping[_], list): | |
for i in mapping[_]: | |
mask += (parse == i) | |
else: | |
mask += (parse == mapping[_]) | |
return mask | |
def hull_mask(mask_area: np.ndarray): | |
ret, binary = cv2.threshold(mask_area, 127, 255, cv2.THRESH_BINARY) | |
contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
hull_mask = np.zeros_like(mask_area) | |
for c in contours: | |
hull = cv2.convexHull(c) | |
hull_mask = cv2.fillPoly(np.zeros_like(mask_area), [hull], 255) | hull_mask | |
return hull_mask | |
class AutoMasker: | |
def __init__( | |
self, | |
densepose_ckpt='./Models/DensePose', | |
schp_ckpt='./Models/SCHP', | |
device='cuda'): | |
np.random.seed(0) | |
torch.manual_seed(0) | |
torch.cuda.manual_seed(0) | |
self.densepose_processor = DensePose(densepose_ckpt, device) | |
self.schp_processor_atr = SCHP(ckpt_path=os.path.join(schp_ckpt, 'exp-schp-201908301523-atr.pth'), device=device) | |
self.schp_processor_lip = SCHP(ckpt_path=os.path.join(schp_ckpt, 'exp-schp-201908261155-lip.pth'), device=device) | |
self.mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True) | |
def process_densepose(self, image_or_path): | |
return self.densepose_processor(image_or_path, resize=1024) | |
def process_schp_lip(self, image_or_path): | |
return self.schp_processor_lip(image_or_path) | |
def process_schp_atr(self, image_or_path): | |
return self.schp_processor_atr(image_or_path) | |
def preprocess_image(self, image_or_path): | |
return { | |
'densepose': self.densepose_processor(image_or_path, resize=1024), | |
'schp_atr': self.schp_processor_atr(image_or_path), | |
'schp_lip': self.schp_processor_lip(image_or_path) | |
} | |
def cloth_agnostic_mask( | |
densepose_mask: Image.Image, | |
schp_lip_mask: Image.Image, | |
schp_atr_mask: Image.Image, | |
part: str='overall', | |
**kwargs | |
): | |
assert part in ['upper', 'lower', 'overall', 'inner', 'outer'], f"part should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {part}" | |
w, h = densepose_mask.size | |
dilate_kernel = max(w, h) // 250 | |
dilate_kernel = dilate_kernel if dilate_kernel % 2 == 1 else dilate_kernel + 1 | |
dilate_kernel = np.ones((dilate_kernel, dilate_kernel), np.uint8) | |
kernal_size = max(w, h) // 25 | |
kernal_size = kernal_size if kernal_size % 2 == 1 else kernal_size + 1 | |
densepose_mask = np.array(densepose_mask) | |
schp_lip_mask = np.array(schp_lip_mask) | |
schp_atr_mask = np.array(schp_atr_mask) | |
# Strong Protect Area (Hands, Face, Accessory, Feet) | |
hands_protect_area = part_mask_of(['hands', 'feet'], densepose_mask, DENSE_INDEX_MAP) | |
hands_protect_area = cv2.dilate(hands_protect_area, dilate_kernel, iterations=1) | |
hands_protect_area = hands_protect_area & \ | |
(part_mask_of(['Left-arm', 'Right-arm', 'Left-leg', 'Right-leg'], schp_atr_mask, ATR_MAPPING) | \ | |
part_mask_of(['Left-arm', 'Right-arm', 'Left-leg', 'Right-leg'], schp_lip_mask, LIP_MAPPING)) | |
face_protect_area = part_mask_of('Face', schp_lip_mask, LIP_MAPPING) | |
strong_protect_area = hands_protect_area | face_protect_area | |
# Weak Protect Area (Hair, Irrelevant Clothes, Body Parts) | |
body_protect_area = part_mask_of(PROTECT_BODY_PARTS[part], schp_lip_mask, LIP_MAPPING) | part_mask_of(PROTECT_BODY_PARTS[part], schp_atr_mask, ATR_MAPPING) | |
hair_protect_area = part_mask_of(['Hair'], schp_lip_mask, LIP_MAPPING) | \ | |
part_mask_of(['Hair'], schp_atr_mask, ATR_MAPPING) | |
cloth_protect_area = part_mask_of(PROTECT_CLOTH_PARTS[part]['LIP'], schp_lip_mask, LIP_MAPPING) | \ | |
part_mask_of(PROTECT_CLOTH_PARTS[part]['ATR'], schp_atr_mask, ATR_MAPPING) | |
accessory_protect_area = part_mask_of((accessory_parts := ['Hat', 'Glove', 'Sunglasses', 'Bag', 'Left-shoe', 'Right-shoe', 'Scarf', 'Socks']), schp_lip_mask, LIP_MAPPING) | \ | |
part_mask_of(accessory_parts, schp_atr_mask, ATR_MAPPING) | |
weak_protect_area = body_protect_area | cloth_protect_area | hair_protect_area | strong_protect_area | accessory_protect_area | |
# Mask Area | |
strong_mask_area = part_mask_of(MASK_CLOTH_PARTS[part], schp_lip_mask, LIP_MAPPING) | \ | |
part_mask_of(MASK_CLOTH_PARTS[part], schp_atr_mask, ATR_MAPPING) | |
background_area = part_mask_of(['Background'], schp_lip_mask, LIP_MAPPING) & part_mask_of(['Background'], schp_atr_mask, ATR_MAPPING) | |
mask_dense_area = part_mask_of(MASK_DENSE_PARTS[part], densepose_mask, DENSE_INDEX_MAP) | |
mask_dense_area = cv2.resize(mask_dense_area.astype(np.uint8), None, fx=0.25, fy=0.25, interpolation=cv2.INTER_NEAREST) | |
mask_dense_area = cv2.dilate(mask_dense_area, dilate_kernel, iterations=2) | |
mask_dense_area = cv2.resize(mask_dense_area.astype(np.uint8), None, fx=4, fy=4, interpolation=cv2.INTER_NEAREST) | |
mask_area = (np.ones_like(densepose_mask) & (~weak_protect_area) & (~background_area)) | mask_dense_area | |
mask_area = hull_mask(mask_area * 255) // 255 # Convex Hull to expand the mask area | |
mask_area = mask_area & (~weak_protect_area) | |
mask_area = cv2.GaussianBlur(mask_area * 255, (kernal_size, kernal_size), 0) | |
mask_area[mask_area < 25] = 0 | |
mask_area[mask_area >= 25] = 1 | |
mask_area = (mask_area | strong_mask_area) & (~strong_protect_area) | |
mask_area = cv2.dilate(mask_area, dilate_kernel, iterations=1) | |
return Image.fromarray(mask_area * 255) | |
def __call__( | |
self, | |
image: Union[str, Image.Image], | |
mask_type: str = "upper", | |
): | |
assert mask_type in ['upper', 'lower', 'overall', 'inner', 'outer'], f"mask_type should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {mask_type}" | |
preprocess_results = self.preprocess_image(image) | |
mask = self.cloth_agnostic_mask( | |
preprocess_results['densepose'], | |
preprocess_results['schp_lip'], | |
preprocess_results['schp_atr'], | |
part=mask_type, | |
) | |
return { | |
'mask': mask, | |
'densepose': preprocess_results['densepose'], | |
'schp_lip': preprocess_results['schp_lip'], | |
'schp_atr': preprocess_results['schp_atr'] | |
} | |
if __name__ == '__main__': | |
pass | |