Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import pipeline | |
import numpy as np | |
import time | |
pipe_vol_g = pipeline("automatic-speech-recognition", model="IABDs8a/whisper-equipo3-g") | |
pipe_small = pipeline("automatic-speech-recognition", model="aitor-medrano/whisper-small-lara") | |
pipe_hombres = pipeline("automatic-speech-recognition", model="IABDs8a/lara-hombres-equipo-3") | |
def greet(grabacion): | |
inicio = time.time() | |
sr, y = grabacion | |
# Pasamos el array de muestras a tipo NumPy de 32 bits | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
inicio_g = time.time() | |
result_g = "g:" + pipe_vol_g({"sampling_rate": sr, "raw": y})["text"] | |
fin_g = time.time() | |
inicio_small = time.time() | |
result_small = "small:" + pipe_small({"sampling_rate": sr, "raw": y})["text"] | |
fin_small = time.time() | |
inicio_hombres = time.time() | |
result_hombres = "hombres:" + pipe_hombres({"sampling_rate": sr, "raw": y})["text"] | |
fin_hombres = time.time() | |
fin = time.time() | |
return result_g, fin_g - inicio_g, result_small, fin_small - inicio_small, result_hombres, fin_hombres - inicio_hombres, fin - inicio | |
#return result_base, result_small, fin - inicio | |
demo = gr.Interface(fn=greet, | |
inputs=[ | |
gr.Audio(), | |
], | |
outputs=[ | |
gr.Text(label="Salida (Voluntaria G)"), | |
gr.Number(label="Tiempo (Voluntaria G)"), | |
gr.Text(label="Salida (Small)"), | |
gr.Number(label="Tiempo (Small)"), | |
gr.Text(label="Salida (Hombres)"), | |
gr.Number(label="Tiempo (Hombres)"), | |
gr.Number(label="Tiempo total") | |
]) | |
demo.launch() | |