Upload run_experiment.py
Browse files- run_experiment.py +154 -0
run_experiment.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import click
|
| 2 |
+
import datetime
|
| 3 |
+
import pprint
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
from src import (
|
| 8 |
+
load_dataset,
|
| 9 |
+
fit_predict_with_model,
|
| 10 |
+
score_predictions,
|
| 11 |
+
AVAILABLE_DATASETS,
|
| 12 |
+
AVAILABLE_MODELS,
|
| 13 |
+
SEASONALITY_MAP,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def apply_ablation(ablation: str, model_kwargs: dict) -> dict:
|
| 18 |
+
if ablation == "NoEnsemble":
|
| 19 |
+
model_kwargs["enable_ensemble"] = False
|
| 20 |
+
elif ablation == "NoDeepModels":
|
| 21 |
+
model_kwargs["hyperparameters"] = {
|
| 22 |
+
"Naive": {},
|
| 23 |
+
"SeasonalNaive": {},
|
| 24 |
+
"ARIMA": {},
|
| 25 |
+
"ETS": {},
|
| 26 |
+
"AutoETS": {},
|
| 27 |
+
"AutoARIMA": {},
|
| 28 |
+
"Theta": {},
|
| 29 |
+
"AutoGluonTabular": {},
|
| 30 |
+
}
|
| 31 |
+
elif ablation == "NoStatModels":
|
| 32 |
+
model_kwargs["hyperparameters"] = {
|
| 33 |
+
"AutoGluonTabular": {},
|
| 34 |
+
"DeepAR": {},
|
| 35 |
+
"SimpleFeedForward": {},
|
| 36 |
+
"TemporalFusionTransformer": {},
|
| 37 |
+
}
|
| 38 |
+
elif ablation == "NoTreeModels":
|
| 39 |
+
model_kwargs["hyperparameters"] = {
|
| 40 |
+
"Naive": {},
|
| 41 |
+
"SeasonalNaive": {},
|
| 42 |
+
"ARIMA": {},
|
| 43 |
+
"ETS": {},
|
| 44 |
+
"AutoETS": {},
|
| 45 |
+
"AutoARIMA": {},
|
| 46 |
+
"Theta": {},
|
| 47 |
+
"DeepAR": {},
|
| 48 |
+
"SimpleFeedForward": {},
|
| 49 |
+
"TemporalFusionTransformer": {},
|
| 50 |
+
}
|
| 51 |
+
return model_kwargs
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
@click.command(
|
| 55 |
+
context_settings=dict(
|
| 56 |
+
ignore_unknown_options=True,
|
| 57 |
+
allow_extra_args=True,
|
| 58 |
+
)
|
| 59 |
+
)
|
| 60 |
+
@click.option(
|
| 61 |
+
"--dataset_name",
|
| 62 |
+
"-d",
|
| 63 |
+
required=True,
|
| 64 |
+
default="m3_other",
|
| 65 |
+
help="The dataset to train the model on",
|
| 66 |
+
type=click.Choice(AVAILABLE_DATASETS),
|
| 67 |
+
)
|
| 68 |
+
@click.option(
|
| 69 |
+
"--model_name",
|
| 70 |
+
"-m",
|
| 71 |
+
default="autogluon",
|
| 72 |
+
help="Model to train",
|
| 73 |
+
type=click.Choice(AVAILABLE_MODELS),
|
| 74 |
+
)
|
| 75 |
+
@click.option(
|
| 76 |
+
"--eval_metric",
|
| 77 |
+
"-e",
|
| 78 |
+
default="MASE",
|
| 79 |
+
type=click.Choice(["MASE", "mean_wQuantileLoss"]),
|
| 80 |
+
)
|
| 81 |
+
@click.option(
|
| 82 |
+
"--seed",
|
| 83 |
+
"-s",
|
| 84 |
+
default=1,
|
| 85 |
+
type=int,
|
| 86 |
+
)
|
| 87 |
+
@click.option(
|
| 88 |
+
"--time_limit",
|
| 89 |
+
"-t",
|
| 90 |
+
default=4 * 3600,
|
| 91 |
+
type=int,
|
| 92 |
+
)
|
| 93 |
+
@click.option(
|
| 94 |
+
"--ablation",
|
| 95 |
+
"-a",
|
| 96 |
+
default=None,
|
| 97 |
+
type=click.Choice(["NoEnsemble", "NoDeepModels", "NoStatModels", "NoTreeModels"]),
|
| 98 |
+
)
|
| 99 |
+
@click.pass_context
|
| 100 |
+
def main(
|
| 101 |
+
ctx,
|
| 102 |
+
dataset_name: str,
|
| 103 |
+
model_name: str,
|
| 104 |
+
eval_metric: str,
|
| 105 |
+
seed: int,
|
| 106 |
+
time_limit: int,
|
| 107 |
+
ablation: Optional[str],
|
| 108 |
+
):
|
| 109 |
+
print(f"Evaluating {model_name} on {dataset_name}")
|
| 110 |
+
dataset = load_dataset(dataset_name)
|
| 111 |
+
task_kwargs = {
|
| 112 |
+
"prediction_length": dataset.metadata.prediction_length,
|
| 113 |
+
"freq": dataset.metadata.freq,
|
| 114 |
+
"eval_metric": eval_metric,
|
| 115 |
+
"seasonality": SEASONALITY_MAP[dataset.metadata.freq],
|
| 116 |
+
}
|
| 117 |
+
print("Task definition:")
|
| 118 |
+
pprint.pprint(task_kwargs)
|
| 119 |
+
|
| 120 |
+
# Additional command line arguments like `--name value` are parsed as {"name": "value"}
|
| 121 |
+
model_kwargs = {ctx.args[i][2:]: ctx.args[i + 1] for i in range(0, len(ctx.args), 2)}
|
| 122 |
+
model_kwargs["seed"] = seed
|
| 123 |
+
model_kwargs["time_limit"] = time_limit
|
| 124 |
+
|
| 125 |
+
if ablation is not None:
|
| 126 |
+
assert model_name == "autogluon", f"{model_name} does not support ablations"
|
| 127 |
+
model_kwargs = apply_ablation(ablation, model_kwargs)
|
| 128 |
+
|
| 129 |
+
if len(model_kwargs) > 0:
|
| 130 |
+
print("Model kwargs:")
|
| 131 |
+
pprint.pprint(model_kwargs)
|
| 132 |
+
|
| 133 |
+
print(f"Starting training {datetime.datetime.now()}")
|
| 134 |
+
|
| 135 |
+
predictions, info = fit_predict_with_model(
|
| 136 |
+
model_name, dataset.train, **task_kwargs, **model_kwargs
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
metrics = score_predictions(
|
| 140 |
+
dataset=dataset.test,
|
| 141 |
+
predictions=predictions,
|
| 142 |
+
prediction_length=task_kwargs["prediction_length"],
|
| 143 |
+
seasonality=task_kwargs["seasonality"],
|
| 144 |
+
)
|
| 145 |
+
print("================================================")
|
| 146 |
+
print(f"model: {model_name}")
|
| 147 |
+
print(f"dataset: {dataset_name}")
|
| 148 |
+
print(f"total_run_time: {info['run_time']:.2f}")
|
| 149 |
+
print(f"mase: {metrics['MASE']:.4f}")
|
| 150 |
+
print(f"mean_wQuantileLoss: {metrics['mean_wQuantileLoss']:.4f}")
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
if __name__ == "__main__":
|
| 154 |
+
main()
|