radames's picture
errors msg
5bdc2c3
raw
history blame
7.24 kB
import io
import base64
import os
from random import sample
from sched import scheduler
import uvicorn
from fastapi import FastAPI, Response
from fastapi.staticfiles import StaticFiles
import httpx
from urllib.parse import urljoin
import numpy as np
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline
from PIL import Image
from PIL import ImageOps
import gradio as gr
import base64
import skimage
import skimage.measure
from utils import *
app = FastAPI()
auth_token = os.environ.get("API_TOKEN") or True
WHITES = 66846720
MASK = Image.open("mask.png")
try:
SAMPLING_MODE = Image.Resampling.LANCZOS
except Exception as e:
SAMPLING_MODE = Image.LANCZOS
blocks = gr.Blocks().queue()
model = {}
def get_model():
if "text2img" not in model:
text2img = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=auth_token,
).to("cuda")
inpaint = StableDiffusionInpaintPipeline(
vae=text2img.vae,
text_encoder=text2img.text_encoder,
tokenizer=text2img.tokenizer,
unet=text2img.unet,
scheduler=text2img.scheduler,
safety_checker=text2img.safety_checker,
feature_extractor=text2img.feature_extractor,
).to("cuda")
# lms = LMSDiscreteScheduler(
# beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
# img2img = StableDiffusionImg2ImgPipeline(
# vae=text2img.vae,
# text_encoder=text2img.text_encoder,
# tokenizer=text2img.tokenizer,
# unet=text2img.unet,
# scheduler=lms,
# safety_checker=text2img.safety_checker,
# feature_extractor=text2img.feature_extractor,
# ).to("cuda")
# try:
# total_memory = torch.cuda.get_device_properties(0).total_memory // (
# 1024 ** 3
# )
# if total_memory <= 5:
# inpaint.enable_attention_slicing()
# except:
# pass
model["text2img"] = text2img
model["inpaint"] = inpaint
# model["img2img"] = img2img
return model["text2img"], model["inpaint"]
# model["img2img"]
get_model()
def run_outpaint(
input_image,
prompt_text,
strength,
guidance,
step,
fill_mode,
):
text2img, inpaint = get_model()
sel_buffer = np.array(input_image)
img = sel_buffer[:, :, 0:3]
mask = sel_buffer[:, :, -1]
process_size = 512
mask_sum = mask.sum()
# if mask_sum >= WHITES:
# print("inpaiting with fixed Mask")
# mask = np.array(MASK)[:, :, 0]
# img, mask = functbl[fill_mode](img, mask)
# init_image = Image.fromarray(img)
# mask = 255 - mask
# mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
# mask = mask.repeat(8, axis=0).repeat(8, axis=1)
# mask_image = Image.fromarray(mask)
# # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
# with autocast("cuda"):
# images = inpaint(
# prompt=prompt_text,
# init_image=init_image.resize(
# (process_size, process_size), resample=SAMPLING_MODE
# ),
# mask_image=mask_image.resize((process_size, process_size)),
# strength=strength,
# num_inference_steps=step,
# guidance_scale=guidance,
# )
if mask_sum > 0:
print("inpainting")
img, mask = functbl[fill_mode](img, mask)
init_image = Image.fromarray(img)
mask = 255 - mask
mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
mask = mask.repeat(8, axis=0).repeat(8, axis=1)
mask_image = Image.fromarray(mask)
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
with autocast("cuda"):
images = inpaint(
prompt=prompt_text,
init_image=init_image.resize(
(process_size, process_size), resample=SAMPLING_MODE
),
mask_image=mask_image.resize((process_size, process_size)),
strength=strength,
num_inference_steps=step,
guidance_scale=guidance,
)
else:
print("text2image")
with autocast("cuda"):
images = text2img(
prompt=prompt_text, height=process_size, width=process_size,
)
return images['sample'][0], images["nsfw_content_detected"][0]
with blocks as demo:
with gr.Row():
with gr.Column(scale=3, min_width=270):
sd_prompt = gr.Textbox(
label="Prompt", placeholder="input your prompt here", lines=4
)
with gr.Column(scale=2, min_width=150):
sd_strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01
)
with gr.Column(scale=1, min_width=150):
sd_step = gr.Number(label="Step", value=50, precision=0)
sd_guidance = gr.Number(label="Guidance", value=7.5)
with gr.Row():
with gr.Column(scale=4, min_width=600):
init_mode = gr.Radio(
label="Init mode",
choices=[
"patchmatch",
"edge_pad",
"cv2_ns",
"cv2_telea",
"gaussian",
"perlin",
],
value="patchmatch",
type="value",
)
model_input = gr.Image(label="Input", type="pil", image_mode="RGBA")
proceed_button = gr.Button("Proceed", elem_id="proceed")
model_output = gr.Image(label="Output")
is_nsfw = gr.JSON()
proceed_button.click(
fn=run_outpaint,
inputs=[
model_input,
sd_prompt,
sd_strength,
sd_guidance,
sd_step,
init_mode,
],
outputs=[model_output, is_nsfw],
)
blocks.config['dev_mode'] = False
S3_HOST = "https://s3.amazonaws.com"
@app.get("/uploads/{path:path}")
async def uploads(path: str, response: Response):
async with httpx.AsyncClient() as client:
proxy = await client.get(f"{S3_HOST}/{path}")
response.body = proxy.content
response.status_code = proxy.status_code
response.headers['Access-Control-Allow-Origin'] = '*'
response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, OPTIONS'
response.headers['Access-Control-Allow-Headers'] = 'Authorization, Content-Type'
response.headers['Cache-Control'] = 'max-age=31536000'
return response
app = gr.mount_gradio_app(app, blocks, "/gradio",
gradio_api_url="http://0.0.0.0:7860/gradio/")
app.mount("/", StaticFiles(directory="../static", html=True), name="static")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860,
log_level="debug", reload=False)