Spaces:
Runtime error
Runtime error
from PIL import Image | |
from PIL import ImageFilter | |
import cv2 | |
import numpy as np | |
import scipy | |
import scipy.signal | |
from scipy.spatial import cKDTree | |
import os | |
from perlin2d import * | |
patch_match_compiled = True | |
from PyPatchMatch import patch_match | |
def edge_pad(img, mask, mode=1): | |
if mode == 0: | |
nmask = mask.copy() | |
nmask[nmask > 0] = 1 | |
res0 = 1 - nmask | |
res1 = nmask | |
p0 = np.stack(res0.nonzero(), axis=0).transpose() | |
p1 = np.stack(res1.nonzero(), axis=0).transpose() | |
min_dists, min_dist_idx = cKDTree(p1).query(p0, 1) | |
loc = p1[min_dist_idx] | |
for (a, b), (c, d) in zip(p0, loc): | |
img[a, b] = img[c, d] | |
elif mode == 1: | |
record = {} | |
kernel = [[1] * 3 for _ in range(3)] | |
nmask = mask.copy() | |
nmask[nmask > 0] = 1 | |
res = scipy.signal.convolve2d( | |
nmask, kernel, mode="same", boundary="fill", fillvalue=1 | |
) | |
res[nmask < 1] = 0 | |
res[res == 9] = 0 | |
res[res > 0] = 1 | |
ylst, xlst = res.nonzero() | |
queue = [(y, x) for y, x in zip(ylst, xlst)] | |
# bfs here | |
cnt = res.astype(np.float32) | |
acc = img.astype(np.float32) | |
step = 1 | |
h = acc.shape[0] | |
w = acc.shape[1] | |
offset = [(1, 0), (-1, 0), (0, 1), (0, -1)] | |
while queue: | |
target = [] | |
for y, x in queue: | |
val = acc[y][x] | |
for yo, xo in offset: | |
yn = y + yo | |
xn = x + xo | |
if 0 <= yn < h and 0 <= xn < w and nmask[yn][xn] < 1: | |
if record.get((yn, xn), step) == step: | |
acc[yn][xn] = acc[yn][xn] * cnt[yn][xn] + val | |
cnt[yn][xn] += 1 | |
acc[yn][xn] /= cnt[yn][xn] | |
if (yn, xn) not in record: | |
record[(yn, xn)] = step | |
target.append((yn, xn)) | |
step += 1 | |
queue = target | |
img = acc.astype(np.uint8) | |
else: | |
nmask = mask.copy() | |
ylst, xlst = nmask.nonzero() | |
yt, xt = ylst.min(), xlst.min() | |
yb, xb = ylst.max(), xlst.max() | |
content = img[yt : yb + 1, xt : xb + 1] | |
img = np.pad( | |
content, | |
((yt, mask.shape[0] - yb - 1), (xt, mask.shape[1] - xb - 1), (0, 0)), | |
mode="edge", | |
) | |
return img, mask | |
def perlin_noise(img, mask): | |
lin = np.linspace(0, 5, mask.shape[0], endpoint=False) | |
x, y = np.meshgrid(lin, lin) | |
avg = img.mean(axis=0).mean(axis=0) | |
# noise=[((perlin(x, y)+1)*128+avg[i]).astype(np.uint8) for i in range(3)] | |
noise = [((perlin(x, y) + 1) * 0.5 * 255).astype(np.uint8) for i in range(3)] | |
noise = np.stack(noise, axis=-1) | |
# mask=skimage.measure.block_reduce(mask,(8,8),np.min) | |
# mask=mask.repeat(8, axis=0).repeat(8, axis=1) | |
# mask_image=Image.fromarray(mask) | |
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 4)) | |
# mask=np.array(mask_image) | |
nmask = mask.copy() | |
# nmask=nmask/255.0 | |
nmask[mask > 0] = 1 | |
img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise | |
# img=img.astype(np.uint8) | |
return img, mask | |
def gaussian_noise(img, mask): | |
noise = np.random.randn(mask.shape[0], mask.shape[1], 3) | |
noise = (noise + 1) / 2 * 255 | |
noise = noise.astype(np.uint8) | |
nmask = mask.copy() | |
nmask[mask > 0] = 1 | |
img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise | |
return img, mask | |
def cv2_telea(img, mask): | |
ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_TELEA) | |
return ret, mask | |
def cv2_ns(img, mask): | |
ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_NS) | |
return ret, mask | |
def patch_match_func(img, mask): | |
ret = patch_match.inpaint(img, mask=255 - mask, patch_size=3) | |
return ret, mask | |
def mean_fill(img, mask): | |
avg = img.mean(axis=0).mean(axis=0) | |
img[mask < 1] = avg | |
return img, mask | |
functbl = { | |
"gaussian": gaussian_noise, | |
"perlin": perlin_noise, | |
"edge_pad": edge_pad, | |
"patchmatch": patch_match_func if (os.name != "nt" and patch_match_compiled) else edge_pad, | |
"cv2_ns": cv2_ns, | |
"cv2_telea": cv2_telea, | |
"mean_fill": mean_fill, | |
} | |