revert to dfif 0.2
Browse files
app.py
CHANGED
@@ -14,13 +14,9 @@ import matplotlib.pyplot as plt
|
|
14 |
import matplotlib.image as mpimg
|
15 |
import time
|
16 |
|
17 |
-
#----------------------------------------------------------------------------------------------------
|
18 |
-
#async requests (otherwise each new !deepfloydif will add another ~20s until the first output)
|
19 |
-
import aiohttp
|
20 |
|
21 |
|
22 |
|
23 |
-
|
24 |
#todos
|
25 |
#alert
|
26 |
|
@@ -29,35 +25,9 @@ jojogan = gradio_client.Client("akhaliq/JoJoGAN")
|
|
29 |
|
30 |
#token update
|
31 |
DFIF_TOKEN = os.getenv('DFIF_TOKEN')
|
32 |
-
#hf_token = DFIF_TOKEN # could clean this up
|
33 |
-
|
34 |
-
#----------------------------------------------------------------------------------------------------
|
35 |
-
class AsyncGradioClient(gradio_client.Client):
|
36 |
-
|
37 |
-
def __init__(self, hf_token=None):
|
38 |
-
self.is_live = False
|
39 |
-
self.hf_token = hf_token
|
40 |
-
#
|
41 |
-
async def predict_async(self, *args, api_name=None, fn_index=None):
|
42 |
-
if api_name is None:
|
43 |
-
api_name = self.default_api_name
|
44 |
-
if fn_index is None:
|
45 |
-
fn_index = self.default_fn_index
|
46 |
-
url = self.api_url + api_name
|
47 |
-
headers = {"Authorization": "Bearer " + self.hf_token} if self.hf_token else {}
|
48 |
-
async with aiohttp.ClientSession() as session:
|
49 |
-
async with session.post(url, json={"args": args, "fn_index": fn_index}, headers=headers) as response:
|
50 |
-
response_json = await response.json()
|
51 |
-
if "error" in response_json:
|
52 |
-
raise Exception(response_json["error"])
|
53 |
-
return response_json["output"]
|
54 |
-
#----------------------------------------------------------------------------------------------------
|
55 |
-
|
56 |
#deepfloydif
|
57 |
#df = Client("DeepFloyd/IF") #not reliable at the moment
|
58 |
-
|
59 |
-
df = AsyncGradioClient("huggingface-projects/IF", hf_token=DFIF_TOKEN)
|
60 |
-
|
61 |
|
62 |
|
63 |
# Set up discord bot
|
@@ -119,8 +89,7 @@ class MyClient(discord.Client):
|
|
119 |
# predict(img, model, api_name="/predict") -> output
|
120 |
# im = jojogan.predict(img, model) -> output
|
121 |
# im = jojogan.predict(attachment.url, style) -> output
|
122 |
-
|
123 |
-
#im = await jojogan.predict_async(attachment.url, style) # new async, could test
|
124 |
im = jojogan.predict(attachment.url, style)
|
125 |
await message.reply(f'Here is the {style} version of it', file=discord.File(im))
|
126 |
else:
|
@@ -155,13 +124,10 @@ class MyClient(discord.Client):
|
|
155 |
current_time = int(time.time())
|
156 |
random.seed(current_time)
|
157 |
seed = random.randint(1, 10000)
|
158 |
-
|
159 |
-
#stage_1_results, stage_1_param_path, stage_1_result_path = df.predict("gradio written on a wall", "blur", 1,1,7.0, 'smart100',50, api_name="/generate64")
|
160 |
stage_1_results, stage_1_param_path, stage_1_result_path = df.predict("llama", "blur", seed,1,7.0, 'smart100',50, api_name="/generate64")
|
161 |
|
162 |
-
stage_1_results, stage_1_param_path, stage_1_result_path =
|
163 |
-
|
164 |
-
|
165 |
|
166 |
# Assuming stage_1_results contains the path to the directory
|
167 |
png_files = [f for f in os.listdir(stage_1_results) if f.endswith('.png')]
|
|
|
14 |
import matplotlib.image as mpimg
|
15 |
import time
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
|
|
|
20 |
#todos
|
21 |
#alert
|
22 |
|
|
|
25 |
|
26 |
#token update
|
27 |
DFIF_TOKEN = os.getenv('DFIF_TOKEN')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
#deepfloydif
|
29 |
#df = Client("DeepFloyd/IF") #not reliable at the moment
|
30 |
+
df = Client("huggingface-projects/IF", hf_token=DFIF_TOKEN)
|
|
|
|
|
31 |
|
32 |
|
33 |
# Set up discord bot
|
|
|
89 |
# predict(img, model, api_name="/predict") -> output
|
90 |
# im = jojogan.predict(img, model) -> output
|
91 |
# im = jojogan.predict(attachment.url, style) -> output
|
92 |
+
|
|
|
93 |
im = jojogan.predict(attachment.url, style)
|
94 |
await message.reply(f'Here is the {style} version of it', file=discord.File(im))
|
95 |
else:
|
|
|
124 |
current_time = int(time.time())
|
125 |
random.seed(current_time)
|
126 |
seed = random.randint(1, 10000)
|
127 |
+
|
|
|
128 |
stage_1_results, stage_1_param_path, stage_1_result_path = df.predict("llama", "blur", seed,1,7.0, 'smart100',50, api_name="/generate64")
|
129 |
|
130 |
+
#stage_1_results, stage_1_param_path, stage_1_result_path = df.predict("gradio written on a wall", "blur", 1,1,7.0, 'smart100',50, api_name="/generate64")
|
|
|
|
|
131 |
|
132 |
# Assuming stage_1_results contains the path to the directory
|
133 |
png_files = [f for f in os.listdir(stage_1_results) if f.endswith('.png')]
|