|
import asyncio |
|
import glob |
|
import os |
|
import pathlib |
|
import random |
|
|
|
import discord |
|
from gradio_client import Client |
|
from PIL import Image |
|
|
|
from discord.ui import Button, View |
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
deepfloydif_client = Client("huggingface-projects/IF", HF_TOKEN) |
|
|
|
BOT_USER_ID = 1086256910572986469 if os.getenv("TEST_ENV", False) else 1102236653545861151 |
|
DEEPFLOYDIF_CHANNEL_ID = 1121834257959092234 if os.getenv("TEST_ENV", False) else 1119313215675973714 |
|
|
|
|
|
def deepfloydif_generate64_inference(prompt): |
|
"""Generates four images based on a prompt""" |
|
negative_prompt = "" |
|
seed = random.randint(0, 1000) |
|
number_of_images = 4 |
|
guidance_scale = 7 |
|
custom_timesteps_1 = "smart50" |
|
number_of_inference_steps = 50 |
|
( |
|
stage_1_images, |
|
stage_1_param_path, |
|
path_for_upscale256_upscaling, |
|
) = deepfloydif_client.predict( |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
number_of_images, |
|
guidance_scale, |
|
custom_timesteps_1, |
|
number_of_inference_steps, |
|
api_name="/generate64", |
|
) |
|
return [stage_1_images, stage_1_param_path, path_for_upscale256_upscaling] |
|
|
|
|
|
def deepfloydif_upscale256_inference(index, path_for_upscale256_upscaling): |
|
"""Upscales one of the images from deepfloydif_generate64_inference based on the chosen index""" |
|
selected_index_for_upscale256 = index |
|
seed_2 = 0 |
|
guidance_scale_2 = 4 |
|
custom_timesteps_2 = "smart50" |
|
number_of_inference_steps_2 = 50 |
|
result_path = deepfloydif_client.predict( |
|
path_for_upscale256_upscaling, |
|
selected_index_for_upscale256, |
|
seed_2, |
|
guidance_scale_2, |
|
custom_timesteps_2, |
|
number_of_inference_steps_2, |
|
api_name="/upscale256", |
|
) |
|
return result_path |
|
|
|
|
|
def deepfloydif_upscale1024_inference(index, path_for_upscale256_upscaling, prompt): |
|
"""Upscales to stage 2, then stage 3""" |
|
selected_index_for_upscale256 = index |
|
seed_2 = 0 |
|
guidance_scale_2 = 4 |
|
custom_timesteps_2 = "smart50" |
|
number_of_inference_steps_2 = 50 |
|
negative_prompt = "" |
|
|
|
seed_3 = 0 |
|
guidance_scale_3 = 9 |
|
number_of_inference_steps_3 = 40 |
|
|
|
result_path = deepfloydif_client.predict( |
|
path_for_upscale256_upscaling, |
|
selected_index_for_upscale256, |
|
seed_2, |
|
guidance_scale_2, |
|
custom_timesteps_2, |
|
number_of_inference_steps_2, |
|
prompt, |
|
negative_prompt, |
|
seed_3, |
|
guidance_scale_3, |
|
number_of_inference_steps_3, |
|
api_name="/upscale1024", |
|
) |
|
return result_path |
|
|
|
|
|
def load_image(png_files, stage_1_images): |
|
"""Opens images as variables so we can combine them later""" |
|
results = [] |
|
for file in png_files: |
|
png_path = os.path.join(stage_1_images, file) |
|
results.append(Image.open(png_path)) |
|
return results |
|
|
|
|
|
def combine_images(png_files, stage_1_images, partial_path): |
|
if os.environ.get("TEST_ENV") == "True": |
|
print("Combining images for deepfloydif_generate64") |
|
images = load_image(png_files, stage_1_images) |
|
combined_image = Image.new("RGB", (images[0].width * 2, images[0].height * 2)) |
|
combined_image.paste(images[0], (0, 0)) |
|
combined_image.paste(images[1], (images[0].width, 0)) |
|
combined_image.paste(images[2], (0, images[0].height)) |
|
combined_image.paste(images[3], (images[0].width, images[0].height)) |
|
combined_image_path = os.path.join(stage_1_images, f"{partial_path}.png") |
|
combined_image.save(combined_image_path) |
|
return combined_image_path |
|
|
|
|
|
async def deepfloydif_generate64(ctx, prompt, client): |
|
"""DeepfloydIF command (generate images with realistic text using slash commands)""" |
|
try: |
|
if ctx.author.id != BOT_USER_ID: |
|
if ctx.channel.id == DEEPFLOYDIF_CHANNEL_ID: |
|
if os.environ.get("TEST_ENV") == "True": |
|
print("Safety checks passed for deepfloydif_generate64") |
|
channel = client.get_channel(DEEPFLOYDIF_CHANNEL_ID) |
|
|
|
message = await ctx.send(f"**{prompt}** - {ctx.author.mention} <a:loading:1114111677990981692>") |
|
|
|
loop = asyncio.get_running_loop() |
|
result = await loop.run_in_executor(None, deepfloydif_generate64_inference, prompt) |
|
stage_1_images = result[0] |
|
path_for_upscale256_upscaling = result[2] |
|
|
|
partial_path = pathlib.Path(path_for_upscale256_upscaling).name |
|
png_files = list(glob.glob(f"{stage_1_images}/**/*.png")) |
|
|
|
if png_files: |
|
await message.delete() |
|
combined_image_path = combine_images(png_files, stage_1_images, partial_path) |
|
if os.environ.get("TEST_ENV") == "True": |
|
print("Images combined for deepfloydif_generate64") |
|
|
|
with Image.open(combined_image_path) as img: |
|
width, height = img.size |
|
new_width = width * 3 |
|
new_height = height * 3 |
|
resized_img = img.resize((new_width, new_height)) |
|
x2_combined_image_path = combined_image_path |
|
resized_img.save(x2_combined_image_path) |
|
|
|
|
|
with open(x2_combined_image_path, "rb") as f: |
|
button1 = Button(custom_id="0", emoji="β") |
|
button2 = Button(custom_id="1", emoji="β") |
|
button3 = Button(custom_id="2", emoji="β") |
|
button4 = Button(custom_id="3", emoji="β") |
|
|
|
async def button_callback(interaction): |
|
index = int(interaction.data["custom_id"]) |
|
|
|
await interaction.response.send_message( |
|
f"{interaction.user.mention} <a:loading:1114111677990981692>", ephemeral=True |
|
) |
|
result_path = await deepfloydif_upscale256(index, path_for_upscale256_upscaling) |
|
|
|
|
|
with open(result_path, "rb") as f: |
|
upscale1024 = Button( |
|
label="High-quality upscale (x4)", custom_id=str(index) |
|
) |
|
upscale1024.callback = upscale1024_callback |
|
view = View(timeout=None) |
|
view.add_item(upscale1024) |
|
|
|
await interaction.delete_original_response() |
|
await channel.send( |
|
content=( |
|
f"{interaction.user.mention} Here is the upscaled image! Click the button" |
|
" to upscale even more!" |
|
), |
|
file=discord.File(f, f"{prompt}.png"), |
|
view=view, |
|
) |
|
|
|
async def upscale1024_callback(interaction): |
|
index = int(interaction.data["custom_id"]) |
|
|
|
await interaction.response.send_message( |
|
f"{interaction.user.mention} <a:loading:1114111677990981692>", ephemeral=True |
|
) |
|
result_path = await deepfloydif_upscale1024(index, path_for_upscale256_upscaling, prompt) |
|
|
|
with open(result_path, "rb") as f: |
|
await interaction.delete_original_response() |
|
await channel.send( |
|
content=f"{interaction.user.mention} Here's your high-quality x16 image!", |
|
file=discord.File(f, f"{prompt}.png"), |
|
) |
|
|
|
button1.callback = button_callback |
|
button2.callback = button_callback |
|
button3.callback = button_callback |
|
button4.callback = button_callback |
|
|
|
view = View(timeout=None) |
|
view.add_item(button1) |
|
view.add_item(button2) |
|
view.add_item(button3) |
|
view.add_item(button4) |
|
|
|
|
|
await channel.send( |
|
f"**{prompt}** - {ctx.author.mention} Click a button to upscale! (make larger + enhance" |
|
" quality)", |
|
file=discord.File(f, f"{partial_path}.png"), |
|
view=view, |
|
) |
|
else: |
|
await ctx.send(f"{ctx.author.mention} No PNG files were found, cannot post them!") |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
|
|
|
|
async def deepfloydif_upscale256(index: int, path_for_upscale256_upscaling): |
|
"""upscaling function for images generated using /deepfloydif""" |
|
try: |
|
loop = asyncio.get_running_loop() |
|
result_path = await loop.run_in_executor( |
|
None, deepfloydif_upscale256_inference, index, path_for_upscale256_upscaling |
|
) |
|
return result_path |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
|
|
|
|
async def deepfloydif_upscale1024(index: int, path_for_upscale256_upscaling, prompt): |
|
"""upscaling function for images generated using /deepfloydif""" |
|
try: |
|
loop = asyncio.get_running_loop() |
|
result_path = await loop.run_in_executor( |
|
None, deepfloydif_upscale1024_inference, index, path_for_upscale256_upscaling, prompt |
|
) |
|
return result_path |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
|