huggingbots / app.py
lunarflu's picture
lunarflu HF Staff
[decorators] individual images test
b6b7b30
raw
history blame
5.83 kB
import discord
import os
import threading
import gradio as gr
import requests
import json
import random
import time
import re
from discord import Embed, Color
from discord.ext import commands
# test
from gradio_client import Client
from PIL import Image
#from ratelimiter import RateLimiter
#
from datetime import datetime
from pytz import timezone
#
import asyncio
DFIF_TOKEN = os.getenv('HF_TOKEN')
df = Client("huggingface-projects/IF", DFIF_TOKEN)
DISCORD_TOKEN = os.environ.get("GRADIOTEST_TOKEN", None)
intents = discord.Intents.default()
intents.message_content = True
bot = commands.Bot(command_prefix='!', intents=intents)
#----------------------------------------------------------------------------------------------------------------------------------------------
@bot.event
async def on_ready():
print('Logged on as', bot.user)
bot.log_channel = bot.get_channel(1100458786826747945) # 1100458786826747945 = bot-test, 1107006391547342910 = lunarbot server
#----------------------------------------------------------------------------------------------------------------------------------------------
# Stage 1
@bot.command()
async def deepfloydif(ctx, *, prompt: str):
try:
prompt = prompt.strip()[:100] # Limit the prompt length to 100 characters
prompt = re.sub(r'[^\w\s]', '', prompt) # Remove special characters
def check_reaction(reaction, user):
return user == ctx.author and str(reaction.emoji) in ['1️⃣', '2️⃣', '3️⃣', '4️⃣']
await ctx.message.add_reaction('πŸ‘')
thread = await ctx.message.create_thread(name=f'{ctx.author} Image Upscaling Thread ')
# create thread -> send new message inside thread + combined_image -> add reactions -> dfif2
await thread.send(f'{ctx.author.mention}Generating images in thread, can take ~1 minute...')
number_of_images = 4
current_time = int(time.time())
random.seed(current_time)
seed = random.randint(0, 2**32 - 1)
stage_1_results, stage_1_param_path, stage_1_result_path = df.predict(prompt, "blur", seed, number_of_images, 7.0, 'smart100', 50, api_name="/generate64")
png_files = [f for f in os.listdir(stage_1_results) if f.endswith('.png')]
'''
if png_files:
first_png = png_files[0]
second_png = png_files[1]
third_png = png_files[2]
fourth_png = png_files[3]
first_png_path = os.path.join(stage_1_results, first_png)
second_png_path = os.path.join(stage_1_results, second_png)
third_png_path = os.path.join(stage_1_results, third_png)
fourth_png_path = os.path.join(stage_1_results, fourth_png)
img1 = Image.open(first_png_path)
img2 = Image.open(second_png_path)
img3 = Image.open(third_png_path)
img4 = Image.open(fourth_png_path)
combined_image = Image.new('RGB', (img1.width * 2, img1.height * 2))
combined_image.paste(img1, (0, 0))
combined_image.paste(img2, (img1.width, 0))
combined_image.paste(img3, (0, img1.height))
combined_image.paste(img4, (img1.width, img1.height))
combined_image_path = os.path.join(stage_1_results, 'combined_image.png')
combined_image.save(combined_image_path)
'''
if png_files:
for i, png_file in enumerate(png_files):
png_file_path = os.path.join(stage_1_results, png_file)
img = Image.open(png_file_path)
image_path = os.path.join(stage_1_results, f'image{i+1}.png')
img.save(image_path)
with open(image_path, 'rb') as f:
await thread.send(f'{ctx.author.mention}Image {i+1}', file=discord.File(f, f'image{i+1}.png'))
await asyncio.sleep(1) # Add a delay between posting each image
await thread.send(f'{ctx.author.mention}React with πŸ‘ to the image you want to upscale!')
#deepfloydif try/except
except Exception as e:
print(f"Error: {e}")
await ctx.reply('An error occurred while processing your request. Please wait 5 seconds before retrying.')
await ctx.message.add_reaction('❌')
#----------------------------------------------------------------------------------------------------------------------------
# Stage 2
async def dfif2(ctx, index: int, stage_1_result_path, thread):
try:
selected_index_for_stage_2 = index
seed_2 = 0
guidance_scale_2 = 4
custom_timesteps_2 = 'smart50'
number_of_inference_steps_2 = 50
result_path = df.predict(stage_1_result_path, selected_index_for_stage_2, seed_2,
guidance_scale_2, custom_timesteps_2, number_of_inference_steps_2, api_name='/upscale256')
with open(result_path, 'rb') as f:
await thread.send(f'{ctx.author.mention}Here is the upscaled image! :) ', file=discord.File(f, 'result.png'))
#await ctx.reply('Here is the result of the second stage', file=discord.File(f, 'result.png'))
await ctx.message.add_reaction('βœ”οΈ')
except Exception as e:
print(f"Error: {e}")
await ctx.reply('An error occurred while processing stage 2 upscaling. Please try again later.')
await ctx.message.add_reaction('❌')
#----------------------------------------------------------------------------------------------------------------------------
def run_bot():
bot.run(DISCORD_TOKEN)
threading.Thread(target=run_bot).start()
def greet(name):
return "Hello " + name + "!"
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()