|
import discord |
|
import gradio_client |
|
from gradio_client import Client |
|
import gradio as gr |
|
import os |
|
import threading |
|
|
|
|
|
import requests |
|
import json |
|
import random |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
import matplotlib.image as mpimg |
|
import time |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
jojogan = gradio_client.Client("akhaliq/JoJoGAN") |
|
|
|
|
|
DFIF_TOKEN = os.getenv('DFIF_TOKEN') |
|
|
|
|
|
df = Client("huggingface-projects/IF", hf_token=DFIF_TOKEN) |
|
|
|
|
|
|
|
class MyClient(discord.Client): |
|
async def on_ready(self): |
|
print('Logged on as', self.user) |
|
|
|
|
|
async def on_message(self, message): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
OFFLINE_ROLE_ID = 1103676632667017266 |
|
guild = message.guild |
|
bot_member = guild.get_member(self.user.id) |
|
if any(role.id == OFFLINE_ROLE_ID for role in bot_member.roles): |
|
return |
|
|
|
|
|
if message.author == self.user: |
|
return |
|
|
|
|
|
REQUIRED_ROLE_ID = 900063512829755413 |
|
if not any(role.id == REQUIRED_ROLE_ID for role in message.author.roles): |
|
return |
|
|
|
|
|
ALLOWED_CHANNEL_IDS = [1100458786826747945] |
|
if message.channel.id not in ALLOWED_CHANNEL_IDS: |
|
return |
|
|
|
|
|
|
|
|
|
if message.content.find("!help") != -1: |
|
await message.reply("Use !jojo !disney !spidey or !sketch. Have fun!", mention_author=True) |
|
|
|
style = None |
|
if message.content.startswith('!jojo'): |
|
style = 'JoJo' |
|
if message.content.startswith('!disney'): |
|
style = 'Disney' |
|
if message.content.startswith('!spidey'): |
|
style = 'Spider-Verse' |
|
if message.content.startswith('!sketch'): |
|
style = 'sketch' |
|
|
|
if style: |
|
if message.attachments: |
|
attachment = message.attachments[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
im = jojogan.predict(attachment.url, style) |
|
await message.reply(f'Here is the {style} version of it', file=discord.File(im)) |
|
else: |
|
await message.channel.send("No attachments to be found...Can't animify dat! Try sending me an image π") |
|
|
|
|
|
|
|
''' |
|
if message.content.startswith('!deepfloydif'): |
|
text_input = message.content[12:].strip() |
|
if text_input: |
|
im = deepfloydif.predict(text_input) |
|
im_bytes = BytesIO() |
|
im.save(im_bytes, 'PNG') |
|
im_bytes.seek(0) |
|
await message.reply(f'Here is the image generated for the input "{text_input}"', file=discord.File(im_bytes, 'output.png')) |
|
else: |
|
await message.channel.send("No text input provided. Please provide some text after the !deepfloydif command.") |
|
|
|
''' |
|
|
|
|
|
if message.content.startswith('!deepfloydif'): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
current_time = int(time.time()) |
|
random.seed(current_time) |
|
seed = random.randint(1, 10000) |
|
|
|
stage_1_results, stage_1_param_path, stage_1_result_path = df.predict("llama", "blur", seed,1,7.0, 'smart100',50, api_name="/generate64") |
|
|
|
|
|
|
|
|
|
png_files = [f for f in os.listdir(stage_1_results) if f.endswith('.png')] |
|
|
|
|
|
if png_files: |
|
first_png = png_files[0] |
|
first_png_path = os.path.join(stage_1_results, first_png) |
|
|
|
|
|
with open(first_png_path, 'rb') as f: |
|
await message.reply(f'Here is the first generated image', file=discord.File(f, 'first_png.png')) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
# stage 1 |
|
prompt = "llama" |
|
negative_prompt = "blue" |
|
seed = 7 # maybe random seed each time? seed = 7 seed = random.randint(0, 2**32 - 1) |
|
number_of_images = 4 |
|
guidance_scale = 7 |
|
custom_timesteps_1 = 'smart100' |
|
number_of_inference_steps = 100 |
|
|
|
stage_1_results, stage_1_param_path, stage_1_result_path = df.predict(prompt, negative_prompt, seed, number_of_images, guidance_scale, custom_timesteps_1, number_of_inference_steps, api_name="/generate64") |
|
|
|
# stage 2 |
|
selected_index_for_stage_2 = -1 |
|
custom_timesteps_2 = 'smart100' # could reset to smart50 if index was the issue |
|
seed = 362572064 # again, could randomize this seed = 362572064 seed = random.randint(0, 2**32 - 1) |
|
|
|
# predict(stage_1_result_path, selected_index_for_stage_2, seed, guidance_scale, custom_timesteps_2, number_of_inference_steps, api_name="/upscale256") -> result |
|
|
|
img = df.predict(stage_1_result_path, selected_index_for_stage_2, seed, guidance_scale, custom_timesteps_2, number_of_inference_steps, api_name="/upscale256") |
|
|
|
# Save the generated image to a file |
|
img_path = "/tmp/generated_image.png" |
|
img.save(img_path) |
|
|
|
# Send the image file as a Discord attachment |
|
with open(img_path, 'rb') as f: |
|
await message.reply(f'Here is the generated image', file=discord.File(f, 'generated_image.png')) |
|
|
|
|
|
|
|
|
|
|
|
''' |
|
|
|
|
|
|
|
DISCORD_TOKEN = os.environ.get("GRADIOTEST_TOKEN", None) |
|
intents = discord.Intents.default() |
|
intents.message_content = True |
|
client = MyClient(intents=intents) |
|
|
|
def run_bot(): |
|
client.run(DISCORD_TOKEN) |
|
|
|
threading.Thread(target=run_bot).start() |
|
|
|
def greet(name): |
|
return "Hello " + name + "!" |
|
|
|
demo = gr.Interface(fn=greet, inputs="text", outputs="text") |
|
demo.launch() |