Spaces:
Runtime error
Runtime error
classification code
Browse files- app.py +72 -52
- classifier.py +70 -0
app.py
CHANGED
|
@@ -31,6 +31,10 @@ S3_DATA_FOLDER = Path("sd-multiplayer-data")
|
|
| 31 |
|
| 32 |
DB_FOLDER = Path("diffusers-gallery-data")
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
s3 = boto3.client(service_name='s3',
|
| 35 |
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
| 36 |
aws_secret_access_key=AWS_SECRET_KEY)
|
|
@@ -76,9 +80,9 @@ def fetch_models(page=0):
|
|
| 76 |
}
|
| 77 |
|
| 78 |
|
| 79 |
-
def fetch_model_card(
|
| 80 |
response = requests.get(
|
| 81 |
-
f'https://huggingface.co/{
|
| 82 |
return response.text
|
| 83 |
|
| 84 |
|
|
@@ -94,16 +98,31 @@ async def find_image_in_model_card(text):
|
|
| 94 |
return await asyncio.gather(*tasks)
|
| 95 |
|
| 96 |
|
| 97 |
-
def
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
|
|
|
| 107 |
initial = fetch_models(0)
|
| 108 |
num_pages = ceil(initial['numTotalItems'] / initial['numItemsPerPage'])
|
| 109 |
|
|
@@ -112,54 +131,55 @@ async def get_all_models():
|
|
| 112 |
print(f"Found {num_pages} pages")
|
| 113 |
|
| 114 |
# fetch all models
|
| 115 |
-
|
| 116 |
for page in tqdm(range(0, num_pages)):
|
| 117 |
print(f"Fetching page {page} of {num_pages}")
|
| 118 |
page_models = fetch_models(page)
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
with open(DB_FOLDER / "models_temp.json", "w") as f:
|
| 122 |
-
json.dump(models, f)
|
| 123 |
-
|
| 124 |
-
# fetch datacards and images
|
| 125 |
-
print(f"Found {len(models)} models")
|
| 126 |
-
final_models = []
|
| 127 |
-
for model in tqdm(models):
|
| 128 |
-
print(f"Fetching model {model['id']}")
|
| 129 |
-
model_card = fetch_model_card(model)
|
| 130 |
-
images = await find_image_in_model_card(model_card)
|
| 131 |
-
# style = await run_inference(f"https://api-inference.huggingface.co/models/{model['id']}", images[0])
|
| 132 |
-
style = []
|
| 133 |
-
# aesthetic = await run_inference(f"https://api-inference.huggingface.co/models/{model['id']}", images[0])
|
| 134 |
-
aesthetic = []
|
| 135 |
-
final_models.append(
|
| 136 |
-
{**model, "images": images, "style": style, "aesthetic": aesthetic}
|
| 137 |
-
)
|
| 138 |
-
return final_models
|
| 139 |
-
|
| 140 |
|
| 141 |
async def sync_data():
|
| 142 |
print("Fetching models")
|
| 143 |
-
|
| 144 |
-
|
|
|
|
| 145 |
with open(DB_FOLDER / "models.json", "w") as f:
|
| 146 |
-
json.dump(
|
| 147 |
# with open(DB_FOLDER / "models.json", "r") as f:
|
| 148 |
-
#
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
| 151 |
with database.get_db() as db:
|
| 152 |
cursor = db.cursor()
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
|
| 165 |
app = FastAPI()
|
|
@@ -174,7 +194,7 @@ app.add_middleware(
|
|
| 174 |
|
| 175 |
# @ app.get("/sync")
|
| 176 |
# async def sync(background_tasks: BackgroundTasks):
|
| 177 |
-
#
|
| 178 |
# return "Synced data to huggingface datasets"
|
| 179 |
|
| 180 |
|
|
@@ -189,16 +209,16 @@ def get_page(page: int = 1):
|
|
| 189 |
cursor.execute("""
|
| 190 |
SELECT *, COUNT(*) OVER() AS total
|
| 191 |
FROM models
|
| 192 |
-
WHERE json_extract(data, '$.likes') >
|
| 193 |
-
ORDER BY
|
| 194 |
LIMIT ? OFFSET ?
|
| 195 |
""", (MAX_PAGE_SIZE, (page - 1) * MAX_PAGE_SIZE))
|
| 196 |
results = cursor.fetchall()
|
| 197 |
-
total = results[0][
|
| 198 |
total_pages = (total + MAX_PAGE_SIZE - 1) // MAX_PAGE_SIZE
|
| 199 |
|
| 200 |
return {
|
| 201 |
-
"models": [json.loads(result[
|
| 202 |
"totalPages": total_pages
|
| 203 |
}
|
| 204 |
|
|
|
|
| 31 |
|
| 32 |
DB_FOLDER = Path("diffusers-gallery-data")
|
| 33 |
|
| 34 |
+
CLASSIFIER_URL = "https://radames-aesthetic-style-nsfw-classifier.hf.space/run/inference"
|
| 35 |
+
ASSETS_URL = "https://d26smi9133w0oo.cloudfront.net/diffusers-gallery/"
|
| 36 |
+
|
| 37 |
+
|
| 38 |
s3 = boto3.client(service_name='s3',
|
| 39 |
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
| 40 |
aws_secret_access_key=AWS_SECRET_KEY)
|
|
|
|
| 80 |
}
|
| 81 |
|
| 82 |
|
| 83 |
+
def fetch_model_card(model_id):
|
| 84 |
response = requests.get(
|
| 85 |
+
f'https://huggingface.co/{model_id}/raw/main/README.md')
|
| 86 |
return response.text
|
| 87 |
|
| 88 |
|
|
|
|
| 98 |
return await asyncio.gather(*tasks)
|
| 99 |
|
| 100 |
|
| 101 |
+
def run_classifier(images):
|
| 102 |
+
images = [i for i in images if i is not None]
|
| 103 |
+
if len(images) > 0:
|
| 104 |
+
# classifying only the first image
|
| 105 |
+
images_urls = [ASSETS_URL + images[0]]
|
| 106 |
+
response = requests.post(CLASSIFIER_URL, json={"data": [
|
| 107 |
+
{"urls": images_urls}, # json urls: list of images urls
|
| 108 |
+
False, # enable/disable gallery image output
|
| 109 |
+
None, # single image input
|
| 110 |
+
None, # files input
|
| 111 |
+
]}).json()
|
| 112 |
|
| 113 |
+
# data response is array data:[[{img0}, {img1}, {img2}...], Label, Gallery],
|
| 114 |
+
class_data = response['data'][0][0]
|
| 115 |
+
print(class_data)
|
| 116 |
+
class_data_parsed = {row['label']: round(
|
| 117 |
+
row['score'], 3) for row in class_data}
|
| 118 |
|
| 119 |
+
# update row data with classificator data
|
| 120 |
+
return class_data_parsed
|
| 121 |
+
else:
|
| 122 |
+
return {}
|
| 123 |
|
| 124 |
+
|
| 125 |
+
async def get_all_new_models():
|
| 126 |
initial = fetch_models(0)
|
| 127 |
num_pages = ceil(initial['numTotalItems'] / initial['numItemsPerPage'])
|
| 128 |
|
|
|
|
| 131 |
print(f"Found {num_pages} pages")
|
| 132 |
|
| 133 |
# fetch all models
|
| 134 |
+
new_models = []
|
| 135 |
for page in tqdm(range(0, num_pages)):
|
| 136 |
print(f"Fetching page {page} of {num_pages}")
|
| 137 |
page_models = fetch_models(page)
|
| 138 |
+
new_models += page_models['models']
|
| 139 |
+
return new_models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
async def sync_data():
|
| 142 |
print("Fetching models")
|
| 143 |
+
new_models = await get_all_new_models()
|
| 144 |
+
print(f"Found {len(new_models)} models")
|
| 145 |
+
# save list of all models for ids
|
| 146 |
with open(DB_FOLDER / "models.json", "w") as f:
|
| 147 |
+
json.dump(new_models, f)
|
| 148 |
# with open(DB_FOLDER / "models.json", "r") as f:
|
| 149 |
+
# new_models = json.load(f)
|
| 150 |
+
|
| 151 |
+
new_models_ids = [model['id'] for model in new_models]
|
| 152 |
+
|
| 153 |
+
# get existing models
|
| 154 |
with database.get_db() as db:
|
| 155 |
cursor = db.cursor()
|
| 156 |
+
cursor.execute("SELECT id FROM models")
|
| 157 |
+
existing_models = [row['id'] for row in cursor.fetchall()]
|
| 158 |
+
models_ids_to_add = list(set(new_models_ids) - set(existing_models))
|
| 159 |
+
# find all models id to add from new_models
|
| 160 |
+
models = [model for model in new_models if model['id'] in models_ids_to_add]
|
| 161 |
+
|
| 162 |
+
print(f"Found {len(models)} new models")
|
| 163 |
+
for model in tqdm(models):
|
| 164 |
+
model_id = model['id']
|
| 165 |
+
model_card = fetch_model_card(model_id)
|
| 166 |
+
images = await find_image_in_model_card(model_card)
|
| 167 |
+
classifier = run_classifier(images)
|
| 168 |
+
# update model row with image and classifier data
|
| 169 |
+
with database.get_db() as db:
|
| 170 |
+
cursor = db.cursor()
|
| 171 |
+
cursor.execute("INSERT INTO models(id, data) VALUES (?, ?)",
|
| 172 |
+
[model_id, json.dumps({
|
| 173 |
+
**model,
|
| 174 |
+
"images": images,
|
| 175 |
+
"class": classifier
|
| 176 |
+
})])
|
| 177 |
+
db.commit()
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# print("Updating repository")
|
| 181 |
+
# subprocess.Popen(
|
| 182 |
+
# "git add . && git commit --amend -m 'update' && git push --force", cwd=DB_FOLDER, shell=True)
|
| 183 |
|
| 184 |
|
| 185 |
app = FastAPI()
|
|
|
|
| 194 |
|
| 195 |
# @ app.get("/sync")
|
| 196 |
# async def sync(background_tasks: BackgroundTasks):
|
| 197 |
+
# await sync_data()
|
| 198 |
# return "Synced data to huggingface datasets"
|
| 199 |
|
| 200 |
|
|
|
|
| 209 |
cursor.execute("""
|
| 210 |
SELECT *, COUNT(*) OVER() AS total
|
| 211 |
FROM models
|
| 212 |
+
WHERE json_extract(data, '$.likes') > 4
|
| 213 |
+
ORDER BY datetime(json_extract(data, '$.lastModified')) DESC
|
| 214 |
LIMIT ? OFFSET ?
|
| 215 |
""", (MAX_PAGE_SIZE, (page - 1) * MAX_PAGE_SIZE))
|
| 216 |
results = cursor.fetchall()
|
| 217 |
+
total = results[0]['total'] if results else 0
|
| 218 |
total_pages = (total + MAX_PAGE_SIZE - 1) // MAX_PAGE_SIZE
|
| 219 |
|
| 220 |
return {
|
| 221 |
+
"models": [json.loads(result['data']) for result in results],
|
| 222 |
"totalPages": total_pages
|
| 223 |
}
|
| 224 |
|
classifier.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import requests
|
| 4 |
+
import json
|
| 5 |
+
import subprocess
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
import uuid
|
| 8 |
+
|
| 9 |
+
from math import ceil
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
|
| 13 |
+
from db import Database
|
| 14 |
+
|
| 15 |
+
DB_FOLDER = Path("diffusers-gallery-data")
|
| 16 |
+
|
| 17 |
+
database = Database(DB_FOLDER)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
CLASSIFIER_URL = "https://radames-aesthetic-style-nsfw-classifier.hf.space/run/inference"
|
| 21 |
+
ASSETS_URL = "https://d26smi9133w0oo.cloudfront.net/diffusers-gallery/"
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def main():
|
| 25 |
+
|
| 26 |
+
with database.get_db() as db:
|
| 27 |
+
cursor = db.cursor()
|
| 28 |
+
cursor.execute("""
|
| 29 |
+
SELECT *
|
| 30 |
+
FROM models
|
| 31 |
+
""")
|
| 32 |
+
results = list(cursor.fetchall())
|
| 33 |
+
|
| 34 |
+
for row in tqdm(results):
|
| 35 |
+
row_id = row['id']
|
| 36 |
+
# keep json data on row_data
|
| 37 |
+
row_data = json.loads(row['data'])
|
| 38 |
+
print("updating row", row_id)
|
| 39 |
+
images = row_data['images']
|
| 40 |
+
|
| 41 |
+
# filter nones
|
| 42 |
+
images = [i for i in images if i is not None]
|
| 43 |
+
if len(images) > 0:
|
| 44 |
+
# classifying only the first image
|
| 45 |
+
images_urls = [ASSETS_URL + images[0]]
|
| 46 |
+
response = requests.post(CLASSIFIER_URL, json={"data": [
|
| 47 |
+
{"urls": images_urls}, # json urls: list of images urls
|
| 48 |
+
False, # enable/disable gallery image output
|
| 49 |
+
None, # single image input
|
| 50 |
+
None, # files input
|
| 51 |
+
]}).json()
|
| 52 |
+
|
| 53 |
+
# data response is array data:[[{img0}, {img1}, {img2}...], Label, Gallery],
|
| 54 |
+
class_data = response['data'][0][0]
|
| 55 |
+
class_data_parsed = {row['label']: round(
|
| 56 |
+
row['score'], 3) for row in class_data}
|
| 57 |
+
|
| 58 |
+
# update row data with classificator data
|
| 59 |
+
row_data['class'] = class_data_parsed
|
| 60 |
+
else:
|
| 61 |
+
row_data['class'] = {}
|
| 62 |
+
with database.get_db() as db:
|
| 63 |
+
cursor = db.cursor()
|
| 64 |
+
cursor.execute("UPDATE models SET data = ? WHERE id = ?",
|
| 65 |
+
[json.dumps(row_data), row_id])
|
| 66 |
+
db.commit()
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
if __name__ == "__main__":
|
| 70 |
+
main()
|