Spaces:
Runtime error
Runtime error
fix regex stuck
Browse files
app.py
CHANGED
|
@@ -24,9 +24,9 @@ import boto3
|
|
| 24 |
from datetime import datetime
|
| 25 |
from db import Database
|
| 26 |
|
| 27 |
-
AWS_ACCESS_KEY_ID = os.getenv(
|
| 28 |
-
AWS_SECRET_KEY = os.getenv(
|
| 29 |
-
AWS_S3_BUCKET_NAME = os.getenv(
|
| 30 |
|
| 31 |
|
| 32 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
@@ -35,13 +35,17 @@ S3_DATA_FOLDER = Path("sd-multiplayer-data")
|
|
| 35 |
|
| 36 |
DB_FOLDER = Path("diffusers-gallery-data")
|
| 37 |
|
| 38 |
-
CLASSIFIER_URL =
|
|
|
|
|
|
|
| 39 |
ASSETS_URL = "https://d26smi9133w0oo.cloudfront.net/diffusers-gallery/"
|
| 40 |
|
| 41 |
|
| 42 |
-
s3 = boto3.client(
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
repo = Repository(
|
|
@@ -54,24 +58,31 @@ repo.git_pull()
|
|
| 54 |
|
| 55 |
database = Database(DB_FOLDER)
|
| 56 |
|
| 57 |
-
REGEX_YAML_BLOCK = re.compile(
|
| 58 |
-
r"^(\s*---[\r\n]+)([\S\s]*?)([\r\n]+---(\r\n|\n|$))")
|
| 59 |
-
|
| 60 |
|
| 61 |
async def upload_resize_image_url(session, image_url):
|
| 62 |
print(f"Uploading image {image_url}")
|
| 63 |
try:
|
| 64 |
async with session.get(image_url) as response:
|
| 65 |
-
if response.status == 200 and (
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
# resize image proportional
|
| 68 |
image = ImageOps.fit(image, (400, 400), Image.LANCZOS)
|
| 69 |
image_bytes = BytesIO()
|
| 70 |
image.save(image_bytes, format="JPEG")
|
| 71 |
image_bytes.seek(0)
|
| 72 |
-
fname = f
|
| 73 |
-
s3.upload_fileobj(
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
return fname
|
| 76 |
except Exception as e:
|
| 77 |
print(f"Error uploading image {image_url}: {e}")
|
|
@@ -80,41 +91,46 @@ async def upload_resize_image_url(session, image_url):
|
|
| 80 |
|
| 81 |
def fetch_models(page=0):
|
| 82 |
response = requests.get(
|
| 83 |
-
f
|
|
|
|
| 84 |
data = response.json()
|
| 85 |
return {
|
| 86 |
-
"models": [model for model in data[
|
| 87 |
-
"numItemsPerPage": data[
|
| 88 |
-
"numTotalItems": data[
|
| 89 |
-
"pageIndex": data[
|
| 90 |
}
|
| 91 |
|
| 92 |
|
| 93 |
def fetch_model_card(model_id):
|
| 94 |
-
response = requests.get(
|
| 95 |
-
f'https://huggingface.co/{model_id}/raw/main/README.md')
|
| 96 |
return response.text
|
| 97 |
|
| 98 |
|
| 99 |
-
|
| 100 |
-
match = REGEX_YAML_BLOCK.search(text_content)
|
| 101 |
-
if match:
|
| 102 |
-
yaml_block = match.group(2)
|
| 103 |
-
data_dict = yaml.safe_load(yaml_block)
|
| 104 |
-
else:
|
| 105 |
-
data_dict = {}
|
| 106 |
-
return data_dict
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
async def find_image_in_model_card(text):
|
| 110 |
-
image_regex = re.compile(r
|
| 111 |
urls = re.findall(image_regex, text)
|
| 112 |
if not urls:
|
| 113 |
return []
|
| 114 |
|
| 115 |
async with aiohttp.ClientSession() as session:
|
| 116 |
-
tasks = [
|
| 117 |
-
session, image_url))
|
|
|
|
|
|
|
| 118 |
return await asyncio.gather(*tasks)
|
| 119 |
|
| 120 |
|
|
@@ -123,17 +139,21 @@ def run_classifier(images):
|
|
| 123 |
if len(images) > 0:
|
| 124 |
# classifying only the first image
|
| 125 |
images_urls = [ASSETS_URL + images[0]]
|
| 126 |
-
response = requests.post(
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
# data response is array data:[[{img0}, {img1}, {img2}...], Label, Gallery],
|
| 134 |
-
class_data = response[
|
| 135 |
-
class_data_parsed = {row[
|
| 136 |
-
row['score'], 3) for row in class_data}
|
| 137 |
|
| 138 |
# update row data with classificator data
|
| 139 |
return class_data_parsed
|
|
@@ -143,10 +163,11 @@ def run_classifier(images):
|
|
| 143 |
|
| 144 |
async def get_all_new_models():
|
| 145 |
initial = fetch_models(0)
|
| 146 |
-
num_pages = ceil(initial[
|
| 147 |
|
| 148 |
print(
|
| 149 |
-
f"Total items: {initial['numTotalItems']} - Items per page: {initial['numItemsPerPage']}"
|
|
|
|
| 150 |
print(f"Found {num_pages} pages")
|
| 151 |
|
| 152 |
# fetch all models
|
|
@@ -154,7 +175,7 @@ async def get_all_new_models():
|
|
| 154 |
for page in tqdm(range(0, num_pages)):
|
| 155 |
print(f"Fetching page {page} of {num_pages}")
|
| 156 |
page_models = fetch_models(page)
|
| 157 |
-
new_models += page_models[
|
| 158 |
return new_models
|
| 159 |
|
| 160 |
|
|
@@ -169,24 +190,28 @@ async def sync_data():
|
|
| 169 |
# with open(DB_FOLDER / "models.json", "r") as f:
|
| 170 |
# new_models = json.load(f)
|
| 171 |
|
| 172 |
-
new_models_ids = [model[
|
| 173 |
|
| 174 |
# get existing models
|
| 175 |
with database.get_db() as db:
|
| 176 |
cursor = db.cursor()
|
| 177 |
cursor.execute("SELECT id FROM models")
|
| 178 |
-
existing_models = [row[
|
| 179 |
models_ids_to_add = list(set(new_models_ids) - set(existing_models))
|
| 180 |
# find all models id to add from new_models
|
| 181 |
-
models = [model for model in all_models if model[
|
| 182 |
|
| 183 |
print(f"Found {len(models)} new models")
|
| 184 |
for model in tqdm(models):
|
| 185 |
-
model_id = model[
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
| 188 |
model_card = fetch_model_card(model_id)
|
|
|
|
| 189 |
model_card_data = get_yaml_data(model_card)
|
|
|
|
| 190 |
images = await find_image_in_model_card(model_card)
|
| 191 |
|
| 192 |
classifier = run_classifier(images)
|
|
@@ -194,58 +219,69 @@ async def sync_data():
|
|
| 194 |
# update model row with image and classifier data
|
| 195 |
with database.get_db() as db:
|
| 196 |
cursor = db.cursor()
|
| 197 |
-
cursor.execute(
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
db.commit()
|
| 209 |
-
print("
|
| 210 |
with database.get_db() as db:
|
| 211 |
cursor = db.cursor()
|
| 212 |
-
cursor.execute(
|
| 213 |
-
"SELECT * from models")
|
| 214 |
to_all_models = list(cursor.fetchall())
|
| 215 |
models_no_images = []
|
| 216 |
for model in to_all_models:
|
| 217 |
-
model_data = json.loads(model[
|
| 218 |
-
images = model_data[
|
| 219 |
filtered_images = [x for x in images if x is not None]
|
| 220 |
if len(filtered_images) == 0:
|
| 221 |
models_no_images.append(model)
|
| 222 |
|
| 223 |
for model in tqdm(models_no_images):
|
| 224 |
-
model_id = model[
|
| 225 |
-
model_data = json.loads(model[
|
|
|
|
| 226 |
model_card = fetch_model_card(model_id)
|
|
|
|
| 227 |
model_card_data = get_yaml_data(model_card)
|
|
|
|
| 228 |
images = await find_image_in_model_card(model_card)
|
| 229 |
classifier = run_classifier(images)
|
| 230 |
-
model_data[
|
| 231 |
-
model_data[
|
| 232 |
-
model_data[
|
| 233 |
# update model row with image and classifier data
|
| 234 |
with database.get_db() as db:
|
| 235 |
cursor = db.cursor()
|
| 236 |
-
cursor.execute(
|
| 237 |
-
|
|
|
|
|
|
|
| 238 |
db.commit()
|
| 239 |
|
| 240 |
print("Update likes and downloads")
|
| 241 |
for model in tqdm(all_models):
|
| 242 |
-
model_id = model[
|
| 243 |
-
likes = model[
|
| 244 |
-
downloads = model[
|
| 245 |
with database.get_db() as db:
|
| 246 |
cursor = db.cursor()
|
| 247 |
-
cursor.execute(
|
| 248 |
-
|
|
|
|
|
|
|
| 249 |
db.commit()
|
| 250 |
|
| 251 |
print("Updating DB repository")
|
|
@@ -288,8 +324,10 @@ class Style(str, Enum):
|
|
| 288 |
nsfw = "nsfw"
|
| 289 |
|
| 290 |
|
| 291 |
-
@
|
| 292 |
-
def get_page(
|
|
|
|
|
|
|
| 293 |
page = page if page > 0 else 1
|
| 294 |
if sort == Sort.trending:
|
| 295 |
sort_query = "likes / MYPOWER((JULIANDAY('now') - JULIANDAY(datetime(json_extract(data, '$.lastModified')))) + 2, 2) DESC"
|
|
@@ -311,7 +349,8 @@ def get_page(page: int = 1, sort: Sort = Sort.trending, style: Style = Style.all
|
|
| 311 |
|
| 312 |
with database.get_db() as db:
|
| 313 |
cursor = db.cursor()
|
| 314 |
-
cursor.execute(
|
|
|
|
| 315 |
SELECT *,
|
| 316 |
COUNT(*) OVER() AS total,
|
| 317 |
isNFSW
|
|
@@ -329,36 +368,37 @@ def get_page(page: int = 1, sort: Sort = Sort.trending, style: Style = Style.all
|
|
| 329 |
))
|
| 330 |
ORDER BY {sort_query}
|
| 331 |
LIMIT {MAX_PAGE_SIZE} OFFSET {(page - 1) * MAX_PAGE_SIZE};
|
| 332 |
-
""",
|
|
|
|
|
|
|
| 333 |
results = cursor.fetchall()
|
| 334 |
-
total = results[0][
|
| 335 |
total_pages = (total + MAX_PAGE_SIZE - 1) // MAX_PAGE_SIZE
|
| 336 |
models_data = []
|
| 337 |
for result in results:
|
| 338 |
-
data = json.loads(result[
|
| 339 |
-
images = data[
|
| 340 |
filtered_images = [x for x in images if x is not None]
|
| 341 |
# clean nulls
|
| 342 |
-
data[
|
| 343 |
# update downloads and likes from db table
|
| 344 |
-
data[
|
| 345 |
-
data[
|
| 346 |
-
data[
|
| 347 |
models_data.append(data)
|
| 348 |
|
| 349 |
-
return {
|
| 350 |
-
"models": models_data,
|
| 351 |
-
"totalPages": total_pages
|
| 352 |
-
}
|
| 353 |
|
| 354 |
|
| 355 |
@app.get("/")
|
| 356 |
def read_root():
|
| 357 |
# return html page from string
|
| 358 |
-
return HTMLResponse(
|
|
|
|
| 359 |
<p>Just a bot to sync data from diffusers gallery please go to
|
| 360 |
<a href="https://huggingface.co/spaces/huggingface-projects/diffusers-gallery" target="_blank" rel="noopener noreferrer">https://huggingface.co/spaces/huggingface-projects/diffusers-gallery</a>
|
| 361 |
-
</p>"""
|
|
|
|
| 362 |
|
| 363 |
|
| 364 |
@app.on_event("startup")
|
|
|
|
| 24 |
from datetime import datetime
|
| 25 |
from db import Database
|
| 26 |
|
| 27 |
+
AWS_ACCESS_KEY_ID = os.getenv("MY_AWS_ACCESS_KEY_ID")
|
| 28 |
+
AWS_SECRET_KEY = os.getenv("MY_AWS_SECRET_KEY")
|
| 29 |
+
AWS_S3_BUCKET_NAME = os.getenv("MY_AWS_S3_BUCKET_NAME")
|
| 30 |
|
| 31 |
|
| 32 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
| 35 |
|
| 36 |
DB_FOLDER = Path("diffusers-gallery-data")
|
| 37 |
|
| 38 |
+
CLASSIFIER_URL = (
|
| 39 |
+
"https://radames-aesthetic-style-nsfw-classifier.hf.space/run/inference"
|
| 40 |
+
)
|
| 41 |
ASSETS_URL = "https://d26smi9133w0oo.cloudfront.net/diffusers-gallery/"
|
| 42 |
|
| 43 |
|
| 44 |
+
s3 = boto3.client(
|
| 45 |
+
service_name="s3",
|
| 46 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
| 47 |
+
aws_secret_access_key=AWS_SECRET_KEY,
|
| 48 |
+
)
|
| 49 |
|
| 50 |
|
| 51 |
repo = Repository(
|
|
|
|
| 58 |
|
| 59 |
database = Database(DB_FOLDER)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
async def upload_resize_image_url(session, image_url):
|
| 63 |
print(f"Uploading image {image_url}")
|
| 64 |
try:
|
| 65 |
async with session.get(image_url) as response:
|
| 66 |
+
if response.status == 200 and (
|
| 67 |
+
response.headers["content-type"].startswith("image")
|
| 68 |
+
or response.headers["content-type"].startswith("application")
|
| 69 |
+
):
|
| 70 |
+
image = Image.open(BytesIO(await response.read())).convert("RGB")
|
| 71 |
# resize image proportional
|
| 72 |
image = ImageOps.fit(image, (400, 400), Image.LANCZOS)
|
| 73 |
image_bytes = BytesIO()
|
| 74 |
image.save(image_bytes, format="JPEG")
|
| 75 |
image_bytes.seek(0)
|
| 76 |
+
fname = f"{uuid.uuid4()}.jpg"
|
| 77 |
+
s3.upload_fileobj(
|
| 78 |
+
Fileobj=image_bytes,
|
| 79 |
+
Bucket=AWS_S3_BUCKET_NAME,
|
| 80 |
+
Key="diffusers-gallery/" + fname,
|
| 81 |
+
ExtraArgs={
|
| 82 |
+
"ContentType": "image/jpeg",
|
| 83 |
+
"CacheControl": "max-age=31536000",
|
| 84 |
+
},
|
| 85 |
+
)
|
| 86 |
return fname
|
| 87 |
except Exception as e:
|
| 88 |
print(f"Error uploading image {image_url}: {e}")
|
|
|
|
| 91 |
|
| 92 |
def fetch_models(page=0):
|
| 93 |
response = requests.get(
|
| 94 |
+
f"https://huggingface.co/models-json?pipeline_tag=text-to-image&p={page}"
|
| 95 |
+
)
|
| 96 |
data = response.json()
|
| 97 |
return {
|
| 98 |
+
"models": [model for model in data["models"] if not model["private"]],
|
| 99 |
+
"numItemsPerPage": data["numItemsPerPage"],
|
| 100 |
+
"numTotalItems": data["numTotalItems"],
|
| 101 |
+
"pageIndex": data["pageIndex"],
|
| 102 |
}
|
| 103 |
|
| 104 |
|
| 105 |
def fetch_model_card(model_id):
|
| 106 |
+
response = requests.get(f"https://huggingface.co/{model_id}/raw/main/README.md")
|
|
|
|
| 107 |
return response.text
|
| 108 |
|
| 109 |
|
| 110 |
+
REGEX = re.compile(r'---(.*?)---', re.DOTALL)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
def get_yaml_data(text_content):
|
| 113 |
+
matches = REGEX.findall(text_content)
|
| 114 |
+
yaml_block = matches[0].strip() if matches else None
|
| 115 |
+
if yaml_block:
|
| 116 |
+
try:
|
| 117 |
+
data_dict = yaml.safe_load(yaml_block)
|
| 118 |
+
return data_dict
|
| 119 |
+
except yaml.YAMLError as exc:
|
| 120 |
+
print(exc)
|
| 121 |
+
return {}
|
| 122 |
|
| 123 |
async def find_image_in_model_card(text):
|
| 124 |
+
image_regex = re.compile(r"https?://\S+(?:png|jpg|jpeg|webp)")
|
| 125 |
urls = re.findall(image_regex, text)
|
| 126 |
if not urls:
|
| 127 |
return []
|
| 128 |
|
| 129 |
async with aiohttp.ClientSession() as session:
|
| 130 |
+
tasks = [
|
| 131 |
+
asyncio.ensure_future(upload_resize_image_url(session, image_url))
|
| 132 |
+
for image_url in urls[0:3]
|
| 133 |
+
]
|
| 134 |
return await asyncio.gather(*tasks)
|
| 135 |
|
| 136 |
|
|
|
|
| 139 |
if len(images) > 0:
|
| 140 |
# classifying only the first image
|
| 141 |
images_urls = [ASSETS_URL + images[0]]
|
| 142 |
+
response = requests.post(
|
| 143 |
+
CLASSIFIER_URL,
|
| 144 |
+
json={
|
| 145 |
+
"data": [
|
| 146 |
+
{"urls": images_urls}, # json urls: list of images urls
|
| 147 |
+
False, # enable/disable gallery image output
|
| 148 |
+
None, # single image input
|
| 149 |
+
None, # files input
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
).json()
|
| 153 |
|
| 154 |
# data response is array data:[[{img0}, {img1}, {img2}...], Label, Gallery],
|
| 155 |
+
class_data = response["data"][0][0]
|
| 156 |
+
class_data_parsed = {row["label"]: round(row["score"], 3) for row in class_data}
|
|
|
|
| 157 |
|
| 158 |
# update row data with classificator data
|
| 159 |
return class_data_parsed
|
|
|
|
| 163 |
|
| 164 |
async def get_all_new_models():
|
| 165 |
initial = fetch_models(0)
|
| 166 |
+
num_pages = ceil(initial["numTotalItems"] / initial["numItemsPerPage"])
|
| 167 |
|
| 168 |
print(
|
| 169 |
+
f"Total items: {initial['numTotalItems']} - Items per page: {initial['numItemsPerPage']}"
|
| 170 |
+
)
|
| 171 |
print(f"Found {num_pages} pages")
|
| 172 |
|
| 173 |
# fetch all models
|
|
|
|
| 175 |
for page in tqdm(range(0, num_pages)):
|
| 176 |
print(f"Fetching page {page} of {num_pages}")
|
| 177 |
page_models = fetch_models(page)
|
| 178 |
+
new_models += page_models["models"]
|
| 179 |
return new_models
|
| 180 |
|
| 181 |
|
|
|
|
| 190 |
# with open(DB_FOLDER / "models.json", "r") as f:
|
| 191 |
# new_models = json.load(f)
|
| 192 |
|
| 193 |
+
new_models_ids = [model["id"] for model in all_models]
|
| 194 |
|
| 195 |
# get existing models
|
| 196 |
with database.get_db() as db:
|
| 197 |
cursor = db.cursor()
|
| 198 |
cursor.execute("SELECT id FROM models")
|
| 199 |
+
existing_models = [row["id"] for row in cursor.fetchall()]
|
| 200 |
models_ids_to_add = list(set(new_models_ids) - set(existing_models))
|
| 201 |
# find all models id to add from new_models
|
| 202 |
+
models = [model for model in all_models if model["id"] in models_ids_to_add]
|
| 203 |
|
| 204 |
print(f"Found {len(models)} new models")
|
| 205 |
for model in tqdm(models):
|
| 206 |
+
model_id = model["id"]
|
| 207 |
+
print(f"\n\nFetching model {model_id}")
|
| 208 |
+
likes = model["likes"]
|
| 209 |
+
downloads = model["downloads"]
|
| 210 |
+
print("Fetching model card")
|
| 211 |
model_card = fetch_model_card(model_id)
|
| 212 |
+
print("Parsing model card")
|
| 213 |
model_card_data = get_yaml_data(model_card)
|
| 214 |
+
print("Finding images in model card")
|
| 215 |
images = await find_image_in_model_card(model_card)
|
| 216 |
|
| 217 |
classifier = run_classifier(images)
|
|
|
|
| 219 |
# update model row with image and classifier data
|
| 220 |
with database.get_db() as db:
|
| 221 |
cursor = db.cursor()
|
| 222 |
+
cursor.execute(
|
| 223 |
+
"INSERT INTO models(id, data, likes, downloads) VALUES (?, ?, ?, ?)",
|
| 224 |
+
[
|
| 225 |
+
model_id,
|
| 226 |
+
json.dumps(
|
| 227 |
+
{
|
| 228 |
+
**model,
|
| 229 |
+
"meta": model_card_data,
|
| 230 |
+
"images": images,
|
| 231 |
+
"class": classifier,
|
| 232 |
+
}
|
| 233 |
+
),
|
| 234 |
+
likes,
|
| 235 |
+
downloads,
|
| 236 |
+
],
|
| 237 |
+
)
|
| 238 |
db.commit()
|
| 239 |
+
print("\n\n\n\nTry to update images again\n\n\n")
|
| 240 |
with database.get_db() as db:
|
| 241 |
cursor = db.cursor()
|
| 242 |
+
cursor.execute("SELECT * from models")
|
|
|
|
| 243 |
to_all_models = list(cursor.fetchall())
|
| 244 |
models_no_images = []
|
| 245 |
for model in to_all_models:
|
| 246 |
+
model_data = json.loads(model["data"])
|
| 247 |
+
images = model_data["images"]
|
| 248 |
filtered_images = [x for x in images if x is not None]
|
| 249 |
if len(filtered_images) == 0:
|
| 250 |
models_no_images.append(model)
|
| 251 |
|
| 252 |
for model in tqdm(models_no_images):
|
| 253 |
+
model_id = model["id"]
|
| 254 |
+
model_data = json.loads(model["data"])
|
| 255 |
+
print(f"\n\nFetching model {model_id}")
|
| 256 |
model_card = fetch_model_card(model_id)
|
| 257 |
+
print("Parsing model card")
|
| 258 |
model_card_data = get_yaml_data(model_card)
|
| 259 |
+
print("Finding images in model card")
|
| 260 |
images = await find_image_in_model_card(model_card)
|
| 261 |
classifier = run_classifier(images)
|
| 262 |
+
model_data["images"] = images
|
| 263 |
+
model_data["class"] = classifier
|
| 264 |
+
model_data["meta"] = model_card_data
|
| 265 |
# update model row with image and classifier data
|
| 266 |
with database.get_db() as db:
|
| 267 |
cursor = db.cursor()
|
| 268 |
+
cursor.execute(
|
| 269 |
+
"UPDATE models SET data = ? WHERE id = ?",
|
| 270 |
+
[json.dumps(model_data), model_id],
|
| 271 |
+
)
|
| 272 |
db.commit()
|
| 273 |
|
| 274 |
print("Update likes and downloads")
|
| 275 |
for model in tqdm(all_models):
|
| 276 |
+
model_id = model["id"]
|
| 277 |
+
likes = model["likes"]
|
| 278 |
+
downloads = model["downloads"]
|
| 279 |
with database.get_db() as db:
|
| 280 |
cursor = db.cursor()
|
| 281 |
+
cursor.execute(
|
| 282 |
+
"UPDATE models SET likes = ?, downloads = ? WHERE id = ?",
|
| 283 |
+
[likes, downloads, model_id],
|
| 284 |
+
)
|
| 285 |
db.commit()
|
| 286 |
|
| 287 |
print("Updating DB repository")
|
|
|
|
| 324 |
nsfw = "nsfw"
|
| 325 |
|
| 326 |
|
| 327 |
+
@app.get("/api/models")
|
| 328 |
+
def get_page(
|
| 329 |
+
page: int = 1, sort: Sort = Sort.trending, style: Style = Style.all, tag: str = None
|
| 330 |
+
):
|
| 331 |
page = page if page > 0 else 1
|
| 332 |
if sort == Sort.trending:
|
| 333 |
sort_query = "likes / MYPOWER((JULIANDAY('now') - JULIANDAY(datetime(json_extract(data, '$.lastModified')))) + 2, 2) DESC"
|
|
|
|
| 349 |
|
| 350 |
with database.get_db() as db:
|
| 351 |
cursor = db.cursor()
|
| 352 |
+
cursor.execute(
|
| 353 |
+
f"""
|
| 354 |
SELECT *,
|
| 355 |
COUNT(*) OVER() AS total,
|
| 356 |
isNFSW
|
|
|
|
| 368 |
))
|
| 369 |
ORDER BY {sort_query}
|
| 370 |
LIMIT {MAX_PAGE_SIZE} OFFSET {(page - 1) * MAX_PAGE_SIZE};
|
| 371 |
+
""",
|
| 372 |
+
(tag, tag, tag, tag),
|
| 373 |
+
)
|
| 374 |
results = cursor.fetchall()
|
| 375 |
+
total = results[0]["total"] if results else 0
|
| 376 |
total_pages = (total + MAX_PAGE_SIZE - 1) // MAX_PAGE_SIZE
|
| 377 |
models_data = []
|
| 378 |
for result in results:
|
| 379 |
+
data = json.loads(result["data"])
|
| 380 |
+
images = data["images"]
|
| 381 |
filtered_images = [x for x in images if x is not None]
|
| 382 |
# clean nulls
|
| 383 |
+
data["images"] = filtered_images
|
| 384 |
# update downloads and likes from db table
|
| 385 |
+
data["downloads"] = result["downloads"]
|
| 386 |
+
data["likes"] = result["likes"]
|
| 387 |
+
data["isNFSW"] = bool(result["isNFSW"])
|
| 388 |
models_data.append(data)
|
| 389 |
|
| 390 |
+
return {"models": models_data, "totalPages": total_pages}
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
|
| 393 |
@app.get("/")
|
| 394 |
def read_root():
|
| 395 |
# return html page from string
|
| 396 |
+
return HTMLResponse(
|
| 397 |
+
"""
|
| 398 |
<p>Just a bot to sync data from diffusers gallery please go to
|
| 399 |
<a href="https://huggingface.co/spaces/huggingface-projects/diffusers-gallery" target="_blank" rel="noopener noreferrer">https://huggingface.co/spaces/huggingface-projects/diffusers-gallery</a>
|
| 400 |
+
</p>"""
|
| 401 |
+
)
|
| 402 |
|
| 403 |
|
| 404 |
@app.on_event("startup")
|