deepfloydif-bot / app.py
lunarflu's picture
lunarflu HF Staff
Synced repo using 'sync_with_huggingface' Github Action
6c32dc3
raw
history blame
10.8 kB
import asyncio
import glob
import os
import pathlib
import random
import threading
import gradio as gr
import discord
from gradio_client import Client
from PIL import Image
from discord.ext import commands
from discord.ui import Button, View
# test2
HF_TOKEN = os.getenv("HF_TOKEN")
deepfloydif_client = Client("huggingface-projects/IF", HF_TOKEN)
DISCORD_TOKEN = os.getenv("DISCORD_TOKEN")
intents = discord.Intents.all()
bot = commands.Bot(command_prefix="/", intents=intents)
@bot.event
async def on_ready():
print(f"Logged in as {bot.user} (ID: {bot.user.id})")
synced = await bot.tree.sync()
print(f"Synced commands: {', '.join([s.name for s in synced])}.")
print("------")
@bot.hybrid_command(
name="deepfloydif",
description="Enter a prompt to generate an image! Can generate realistic text, too!",
)
async def deepfloydif(ctx, prompt: str):
"""DeepfloydIF stage 1 generation"""
try:
await deepfloydif_generate64(ctx, prompt)
except Exception as e:
print(f"Error: {e}")
def deepfloydif_generate64_inference(prompt):
"""Generates four images based on a prompt"""
negative_prompt = ""
seed = random.randint(0, 1000)
number_of_images = 4
guidance_scale = 7
custom_timesteps_1 = "smart50"
number_of_inference_steps = 50
(
stage_1_images,
stage_1_param_path,
path_for_upscale256_upscaling,
) = deepfloydif_client.predict(
prompt,
negative_prompt,
seed,
number_of_images,
guidance_scale,
custom_timesteps_1,
number_of_inference_steps,
api_name="/generate64",
)
return [stage_1_images, stage_1_param_path, path_for_upscale256_upscaling]
def deepfloydif_upscale256_inference(index, path_for_upscale256_upscaling):
"""Upscales one of the images from deepfloydif_generate64_inference based on the chosen index"""
selected_index_for_upscale256 = index
seed_2 = 0
guidance_scale_2 = 4
custom_timesteps_2 = "smart50"
number_of_inference_steps_2 = 50
result_path = deepfloydif_client.predict(
path_for_upscale256_upscaling,
selected_index_for_upscale256,
seed_2,
guidance_scale_2,
custom_timesteps_2,
number_of_inference_steps_2,
api_name="/upscale256",
)
return result_path
def deepfloydif_upscale1024_inference(index, path_for_upscale256_upscaling, prompt):
"""Upscales to stage 2, then stage 3"""
selected_index_for_upscale256 = index
seed_2 = 0 # default seed for stage 2 256 upscaling
guidance_scale_2 = 4 # default for stage 2
custom_timesteps_2 = "smart50" # default for stage 2
number_of_inference_steps_2 = 50 # default for stage 2
negative_prompt = "" # empty (not used, could add in the future)
seed_3 = 0 # default for stage 3 1024 upscaling
guidance_scale_3 = 9 # default for stage 3
number_of_inference_steps_3 = 40 # default for stage 3
result_path = deepfloydif_client.predict(
path_for_upscale256_upscaling,
selected_index_for_upscale256,
seed_2,
guidance_scale_2,
custom_timesteps_2,
number_of_inference_steps_2,
prompt,
negative_prompt,
seed_3,
guidance_scale_3,
number_of_inference_steps_3,
api_name="/upscale1024",
)
return result_path
def load_image(png_files, stage_1_images):
"""Opens images as variables so we can combine them later"""
results = []
for file in png_files:
png_path = os.path.join(stage_1_images, file)
results.append(Image.open(png_path))
return results
def combine_images(png_files, stage_1_images, partial_path):
if os.environ.get("TEST_ENV") == "True":
print("Combining images for deepfloydif_generate64")
images = load_image(png_files, stage_1_images)
combined_image = Image.new("RGB", (images[0].width * 2, images[0].height * 2))
combined_image.paste(images[0], (0, 0))
combined_image.paste(images[1], (images[0].width, 0))
combined_image.paste(images[2], (0, images[0].height))
combined_image.paste(images[3], (images[0].width, images[0].height))
combined_image_path = os.path.join(stage_1_images, f"{partial_path}.png")
combined_image.save(combined_image_path)
return combined_image_path
async def deepfloydif_generate64(ctx, prompt):
"""DeepfloydIF command (generate images with realistic text using slash commands)"""
try:
channel = ctx.channel
# interaction.response message can't be used to create a thread, so we create another message
message = await ctx.send(f"**{prompt}** - {ctx.author.mention} (generating...)")
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(None, deepfloydif_generate64_inference, prompt)
stage_1_images = result[0]
path_for_upscale256_upscaling = result[2]
partial_path = pathlib.Path(path_for_upscale256_upscaling).name
png_files = list(glob.glob(f"{stage_1_images}/**/*.png"))
if png_files:
await message.delete()
combined_image_path = combine_images(png_files, stage_1_images, partial_path)
if os.environ.get("TEST_ENV") == "True":
print("Images combined for deepfloydif_generate64")
with Image.open(combined_image_path) as img:
width, height = img.size
new_width = width * 3
new_height = height * 3
resized_img = img.resize((new_width, new_height))
x2_combined_image_path = combined_image_path
resized_img.save(x2_combined_image_path)
# making image bigger, more readable
with open(x2_combined_image_path, "rb") as f: # was combined_image_path
button1 = Button(custom_id="0", emoji="↖")
button2 = Button(custom_id="1", emoji="↗")
button3 = Button(custom_id="2", emoji="↙")
button4 = Button(custom_id="3", emoji="↘")
async def button_callback(interaction):
index = int(interaction.data["custom_id"]) # 0,1,2,3
await interaction.response.send_message(
f"{interaction.user.mention} (upscaling...)", ephemeral=True
)
result_path = await deepfloydif_upscale256(index, path_for_upscale256_upscaling)
# create and use upscale 1024 button
with open(result_path, "rb") as f:
upscale1024 = Button(label="High-quality upscale (x4)", custom_id=str(index))
upscale1024.callback = upscale1024_callback
view = View(timeout=None)
view.add_item(upscale1024)
await interaction.delete_original_response()
await channel.send(
content=(
f"{interaction.user.mention} Here is the upscaled image! Click the button"
" to upscale even more!"
),
file=discord.File(f, f"{prompt}.png"),
view=view,
)
async def upscale1024_callback(interaction):
index = int(interaction.data["custom_id"])
await interaction.response.send_message(
f"{interaction.user.mention} (upscaling...)", ephemeral=True
)
result_path = await deepfloydif_upscale1024(index, path_for_upscale256_upscaling, prompt)
with open(result_path, "rb") as f:
await interaction.delete_original_response()
await channel.send(
content=f"{interaction.user.mention} Here's your high-quality x16 image!",
file=discord.File(f, f"{prompt}.png"),
)
button1.callback = button_callback
button2.callback = button_callback
button3.callback = button_callback
button4.callback = button_callback
view = View(timeout=None)
view.add_item(button1)
view.add_item(button2)
view.add_item(button3)
view.add_item(button4)
# could store this message as combined_image_dfif in case it's useful for future testing
await channel.send(
f"**{prompt}** - {ctx.author.mention} Click a button to upscale! (make larger + enhance quality)",
file=discord.File(f, f"{partial_path}.png"),
view=view,
)
else:
await ctx.send(f"{ctx.author.mention} No PNG files were found, cannot post them!")
except Exception as e:
print(f"Error: {e}")
async def deepfloydif_upscale256(index: int, path_for_upscale256_upscaling):
"""upscaling function for images generated using /deepfloydif"""
try:
loop = asyncio.get_running_loop()
result_path = await loop.run_in_executor(
None, deepfloydif_upscale256_inference, index, path_for_upscale256_upscaling
)
return result_path
except Exception as e:
print(f"Error: {e}")
async def deepfloydif_upscale1024(index: int, path_for_upscale256_upscaling, prompt):
"""upscaling function for images generated using /deepfloydif"""
try:
loop = asyncio.get_running_loop()
result_path = await loop.run_in_executor(
None, deepfloydif_upscale1024_inference, index, path_for_upscale256_upscaling, prompt
)
return result_path
except Exception as e:
print(f"Error: {e}")
def run_bot():
bot.run(DISCORD_TOKEN)
threading.Thread(target=run_bot).start()
welcome_message = """
## Add this bot to your server by clicking this link:
https://discord.com/api/oauth2/authorize?client_id=1154395078735953930&permissions=51200&scope=bot
## How to use it?
The bot can be triggered via `/deepfloydif` followed by your text prompt.
This will generate images based on the text prompt. You can upscale the images using the buttons up to 16x!
⚠️ Note ⚠️: Please make sure this bot's command does have the same name as another command in your server.
⚠️ Note ⚠️: Bot commands do not work in DMs with the bot as of now.
"""
with gr.Blocks() as demo:
gr.Markdown(f"""
# Discord bot of https://huggingface.co/spaces/DeepFloyd/IF
{welcome_message}
""")
demo.queue(concurrency_count=100)
demo.queue(max_size=100)
demo.launch()