Spaces:
Running
on
Zero
Running
on
Zero
generate qr codes and images on the fly
Browse files- app.py +102 -10
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
4 |
from diffusers import (
|
5 |
StableDiffusionControlNetImg2ImgPipeline,
|
6 |
ControlNetModel,
|
@@ -9,6 +13,16 @@ from diffusers import (
|
|
9 |
from diffusers.utils import load_image
|
10 |
from PIL import Image
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
controlnet = ControlNetModel.from_pretrained(
|
13 |
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
|
14 |
)
|
@@ -40,6 +54,7 @@ def resize_for_condition_image(input_image: Image.Image, resolution: int):
|
|
40 |
def inference(
|
41 |
init_image: Image.Image,
|
42 |
qrcode_image: Image.Image,
|
|
|
43 |
prompt: str,
|
44 |
negative_prompt: str,
|
45 |
guidance_scale: float = 10.0,
|
@@ -48,9 +63,37 @@ def inference(
|
|
48 |
seed: int = -1,
|
49 |
num_inference_steps: int = 30,
|
50 |
):
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
54 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
55 |
|
56 |
out = pipe(
|
@@ -58,15 +101,15 @@ def inference(
|
|
58 |
negative_prompt=negative_prompt,
|
59 |
image=init_image,
|
60 |
control_image=qrcode_image, # type: ignore
|
61 |
-
width=768,
|
62 |
-
height=768,
|
63 |
guidance_scale=float(guidance_scale),
|
64 |
-
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
65 |
generator=generator,
|
66 |
strength=float(strength),
|
67 |
num_inference_steps=num_inference_steps,
|
68 |
)
|
69 |
-
return out.images[0]
|
70 |
|
71 |
|
72 |
with gr.Blocks() as blocks:
|
@@ -79,13 +122,26 @@ with gr.Blocks() as blocks:
|
|
79 |
|
80 |
with gr.Row():
|
81 |
with gr.Column():
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
negative_prompt = gr.Textbox(
|
86 |
label="Negative Prompt",
|
87 |
value="ugly, disfigured, low quality, blurry, nsfw",
|
88 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
with gr.Accordion(label="Params"):
|
90 |
guidance_scale = gr.Slider(
|
91 |
minimum=0.0,
|
@@ -120,6 +176,7 @@ with gr.Blocks() as blocks:
|
|
120 |
inputs=[
|
121 |
init_image,
|
122 |
qr_code_image,
|
|
|
123 |
prompt,
|
124 |
negative_prompt,
|
125 |
guidance_scale,
|
@@ -135,18 +192,53 @@ with gr.Blocks() as blocks:
|
|
135 |
[
|
136 |
"./examples/init.jpeg",
|
137 |
"./examples/qrcode.png",
|
|
|
138 |
"crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
|
139 |
"ugly, disfigured, low quality, blurry, nsfw",
|
140 |
10.0,
|
141 |
2.0,
|
142 |
0.8,
|
143 |
2313123,
|
144 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
],
|
146 |
fn=inference,
|
147 |
inputs=[
|
148 |
init_image,
|
149 |
qr_code_image,
|
|
|
150 |
prompt,
|
151 |
negative_prompt,
|
152 |
guidance_scale,
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
+
import qrcode
|
5 |
+
from gradio_client import Client
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
from diffusers import (
|
9 |
StableDiffusionControlNetImg2ImgPipeline,
|
10 |
ControlNetModel,
|
|
|
13 |
from diffusers.utils import load_image
|
14 |
from PIL import Image
|
15 |
|
16 |
+
|
17 |
+
sd_client = Client("stabilityai/stable-diffusion")
|
18 |
+
|
19 |
+
qrcode_generator = qrcode.QRCode(
|
20 |
+
version=1,
|
21 |
+
error_correction=qrcode.constants.ERROR_CORRECT_H,
|
22 |
+
box_size=10,
|
23 |
+
border=0,
|
24 |
+
)
|
25 |
+
|
26 |
controlnet = ControlNetModel.from_pretrained(
|
27 |
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
|
28 |
)
|
|
|
54 |
def inference(
|
55 |
init_image: Image.Image,
|
56 |
qrcode_image: Image.Image,
|
57 |
+
qr_code_content: str,
|
58 |
prompt: str,
|
59 |
negative_prompt: str,
|
60 |
guidance_scale: float = 10.0,
|
|
|
63 |
seed: int = -1,
|
64 |
num_inference_steps: int = 30,
|
65 |
):
|
66 |
+
if prompt is None or prompt == "":
|
67 |
+
raise gr.Error("Prompt is required")
|
68 |
+
|
69 |
+
if qrcode_image is None and qr_code_content is None:
|
70 |
+
raise gr.Error("QR Code Image or QR Code Content is required")
|
71 |
+
|
72 |
+
if init_image is None:
|
73 |
+
print("Generating random image from prompt using Stable Diffusion")
|
74 |
+
# generate image from prompt
|
75 |
+
img_dir = sd_client.predict(prompt, negative_prompt, 7, fn_index=1)
|
76 |
+
images = Path(img_dir).rglob("*.jpg")
|
77 |
+
init_image = Image.open(next(images))
|
78 |
+
|
79 |
+
if qr_code_content is not None or qr_code_content != "":
|
80 |
+
print("Generating QR Code from content")
|
81 |
+
qr = qrcode.QRCode(
|
82 |
+
version=1,
|
83 |
+
error_correction=qrcode.constants.ERROR_CORRECT_H,
|
84 |
+
box_size=10,
|
85 |
+
border=4,
|
86 |
+
)
|
87 |
+
qr.add_data(qr_code_content)
|
88 |
+
qr.make(fit=True)
|
89 |
+
|
90 |
+
qrcode_image = qr.make_image(fill_color="black", back_color="white")
|
91 |
+
qrcode_image = resize_for_condition_image(qrcode_image, 768)
|
92 |
+
else:
|
93 |
+
print("Using QR Code Image")
|
94 |
+
qrcode_image = resize_for_condition_image(qrcode_image, 768)
|
95 |
|
96 |
+
init_image = resize_for_condition_image(init_image, 768)
|
97 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
98 |
|
99 |
out = pipe(
|
|
|
101 |
negative_prompt=negative_prompt,
|
102 |
image=init_image,
|
103 |
control_image=qrcode_image, # type: ignore
|
104 |
+
width=768, # type: ignore
|
105 |
+
height=768, # type: ignore
|
106 |
guidance_scale=float(guidance_scale),
|
107 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore
|
108 |
generator=generator,
|
109 |
strength=float(strength),
|
110 |
num_inference_steps=num_inference_steps,
|
111 |
)
|
112 |
+
return out.images[0] # type: ignore
|
113 |
|
114 |
|
115 |
with gr.Blocks() as blocks:
|
|
|
122 |
|
123 |
with gr.Row():
|
124 |
with gr.Column():
|
125 |
+
qr_code_content = gr.Textbox(
|
126 |
+
label="QR Code Content",
|
127 |
+
info="QR Code Content or URL",
|
128 |
+
value="",
|
129 |
+
)
|
130 |
+
prompt = gr.Textbox(
|
131 |
+
label="Prompt",
|
132 |
+
info="Prompt is required. If init image is not provided, then it will be generated from prompt using Stable Diffusion 2.1",
|
133 |
+
)
|
134 |
negative_prompt = gr.Textbox(
|
135 |
label="Negative Prompt",
|
136 |
value="ugly, disfigured, low quality, blurry, nsfw",
|
137 |
)
|
138 |
+
init_image = gr.Image(label="Init Image (Optional)", type="pil")
|
139 |
+
|
140 |
+
qr_code_image = gr.Image(
|
141 |
+
label="QR Code Image (Optional)",
|
142 |
+
type="pil",
|
143 |
+
)
|
144 |
+
|
145 |
with gr.Accordion(label="Params"):
|
146 |
guidance_scale = gr.Slider(
|
147 |
minimum=0.0,
|
|
|
176 |
inputs=[
|
177 |
init_image,
|
178 |
qr_code_image,
|
179 |
+
qr_code_content,
|
180 |
prompt,
|
181 |
negative_prompt,
|
182 |
guidance_scale,
|
|
|
192 |
[
|
193 |
"./examples/init.jpeg",
|
194 |
"./examples/qrcode.png",
|
195 |
+
"",
|
196 |
"crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
|
197 |
"ugly, disfigured, low quality, blurry, nsfw",
|
198 |
10.0,
|
199 |
2.0,
|
200 |
0.8,
|
201 |
2313123,
|
202 |
+
],
|
203 |
+
[
|
204 |
+
"./examples/init.jpeg",
|
205 |
+
None,
|
206 |
+
"https://huggingface.co",
|
207 |
+
"crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
|
208 |
+
"ugly, disfigured, low quality, blurry, nsfw",
|
209 |
+
10.0,
|
210 |
+
2.0,
|
211 |
+
0.8,
|
212 |
+
2313123,
|
213 |
+
],
|
214 |
+
[
|
215 |
+
None,
|
216 |
+
None,
|
217 |
+
"https://huggingface.co",
|
218 |
+
"crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
|
219 |
+
"ugly, disfigured, low quality, blurry, nsfw",
|
220 |
+
10.0,
|
221 |
+
2.0,
|
222 |
+
0.8,
|
223 |
+
2313123,
|
224 |
+
],
|
225 |
+
[
|
226 |
+
None,
|
227 |
+
None,
|
228 |
+
"https://huggingface.co",
|
229 |
+
"A flying cat over a jungle",
|
230 |
+
"ugly, disfigured, low quality, blurry, nsfw",
|
231 |
+
10.0,
|
232 |
+
2.0,
|
233 |
+
0.8,
|
234 |
+
2313123,
|
235 |
+
],
|
236 |
],
|
237 |
fn=inference,
|
238 |
inputs=[
|
239 |
init_image,
|
240 |
qr_code_image,
|
241 |
+
qr_code_content,
|
242 |
prompt,
|
243 |
negative_prompt,
|
244 |
guidance_scale,
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ accelerate
|
|
4 |
torch
|
5 |
xformers
|
6 |
gradio
|
7 |
-
Pillow
|
|
|
|
4 |
torch
|
5 |
xformers
|
6 |
gradio
|
7 |
+
Pillow
|
8 |
+
qrcode
|