Commit
β’
88d91f4
1
Parent(s):
9681540
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,21 @@
|
|
|
|
1 |
import json
|
2 |
-
|
3 |
import requests
|
4 |
|
5 |
-
from datasets import load_dataset
|
6 |
-
|
7 |
import gradio as gr
|
8 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
-
|
10 |
-
|
11 |
-
from huggingface_hub import HfApi, hf_hub_download
|
12 |
-
from huggingface_hub.repocard import metadata_load
|
13 |
import pandas as pd
|
|
|
|
|
|
|
14 |
|
15 |
from utils import *
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
block = gr.Blocks()
|
|
|
19 |
|
20 |
# Containing the data
|
21 |
rl_envs = [
|
@@ -135,8 +135,6 @@ rl_envs = [
|
|
135 |
}
|
136 |
]
|
137 |
|
138 |
-
|
139 |
-
|
140 |
def get_metadata(model_id):
|
141 |
try:
|
142 |
readme_path = hf_hub_download(model_id, filename="README.md")
|
@@ -181,13 +179,11 @@ def get_model_ids(rl_env):
|
|
181 |
api = HfApi()
|
182 |
models = api.list_models(filter=rl_env)
|
183 |
model_ids = [x.modelId for x in models]
|
184 |
-
#print(model_ids)
|
185 |
return model_ids
|
186 |
|
187 |
-
def
|
188 |
# Get model ids associated with rl_env
|
189 |
model_ids = get_model_ids(rl_env)
|
190 |
-
#print(model_ids)
|
191 |
data = []
|
192 |
for model_id in model_ids:
|
193 |
"""
|
@@ -200,8 +196,8 @@ def get_model_dataframe(rl_env):
|
|
200 |
continue
|
201 |
user_id = model_id.split('/')[0]
|
202 |
row = {}
|
203 |
-
row["User"] =
|
204 |
-
row["Model"] =
|
205 |
accuracy = parse_metrics_accuracy(meta)
|
206 |
mean_reward, std_reward = parse_rewards(accuracy)
|
207 |
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
@@ -210,14 +206,53 @@ def get_model_dataframe(rl_env):
|
|
210 |
row["Mean Reward"] = mean_reward
|
211 |
row["Std Reward"] = std_reward
|
212 |
data.append(row)
|
213 |
-
|
214 |
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
return ranked_dataframe
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
def rank_dataframe(dataframe):
|
220 |
-
#print("DATAFRAME", dataframe)
|
221 |
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
222 |
if not 'Ranking' in dataframe.columns:
|
223 |
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
@@ -226,33 +261,56 @@ def rank_dataframe(dataframe):
|
|
226 |
return dataframe
|
227 |
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
with block:
|
230 |
gr.Markdown(f"""
|
231 |
# π The Deep Reinforcement Learning Course Leaderboard π
|
232 |
|
233 |
-
This is the leaderboard of trained agents during the Deep Reinforcement Learning Course
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
**
|
238 |
|
|
|
239 |
We use **lower bound result to sort the models: mean_reward - std_reward.**
|
240 |
|
241 |
-
|
|
|
242 |
|
|
|
243 |
π€ You want to try to train your agents? <a href="https://huggingface.co/deep-rl-course/unit0/introduction?fw=pt" target="_blank"> Check the Hugging Face free Deep Reinforcement Learning Course π€ </a>.
|
244 |
-
|
245 |
-
You want to compare two agents? <a href="https://huggingface.co/spaces/ThomasSimonini/Compare-Reinforcement-Learning-Agents" target="_blank">It's possible using this Spaces demo π </a>.
|
246 |
-
|
247 |
π§ There is an **environment missing?** Please open an issue.
|
248 |
-
|
249 |
-
For the RL course progress check out <a href="https://huggingface.co/spaces/ThomasSimonini/Check-my-progress-Deep-RL-Course" target="_blank"> User Progress App </a>
|
250 |
""")
|
251 |
-
|
252 |
-
|
253 |
for i in range(0, len(rl_envs)):
|
254 |
rl_env = rl_envs[i]
|
255 |
-
|
256 |
with gr.TabItem(rl_env["rl_env_beautiful"]) as rl_tab:
|
257 |
with gr.Row():
|
258 |
markdown = """
|
@@ -260,14 +318,25 @@ with block:
|
|
260 |
|
261 |
""".format(name_leaderboard = rl_env["rl_env_beautiful"], video_link = rl_env["video_link"])
|
262 |
gr.Markdown(markdown)
|
|
|
|
|
263 |
with gr.Row():
|
264 |
-
|
|
|
|
|
|
|
|
|
265 |
with gr.Row():
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
block.launch()
|
273 |
|
@@ -281,9 +350,10 @@ def refresh_leaderboard():
|
|
281 |
temp = get_model_dataframe(rl_env)
|
282 |
rl_env["global"] = temp
|
283 |
print("The leaderboard has been updated")
|
|
|
|
|
284 |
|
285 |
scheduler = BackgroundScheduler()
|
286 |
# Refresh every hour
|
287 |
-
scheduler.add_job(func=
|
288 |
-
scheduler.start()
|
289 |
-
|
|
|
1 |
+
import os
|
2 |
import json
|
|
|
3 |
import requests
|
4 |
|
|
|
|
|
5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
6 |
import pandas as pd
|
7 |
+
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
8 |
+
from huggingface_hub.repocard import metadata_load
|
9 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
|
11 |
from utils import *
|
12 |
|
13 |
+
DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/drlc-leaderboard-data"
|
14 |
+
DATASET_REPO_ID = "huggingface-projects/drlc-leaderboard-data"
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
|
17 |
block = gr.Blocks()
|
18 |
+
api = HfApi(token=HF_TOKEN)
|
19 |
|
20 |
# Containing the data
|
21 |
rl_envs = [
|
|
|
135 |
}
|
136 |
]
|
137 |
|
|
|
|
|
138 |
def get_metadata(model_id):
|
139 |
try:
|
140 |
readme_path = hf_hub_download(model_id, filename="README.md")
|
|
|
179 |
api = HfApi()
|
180 |
models = api.list_models(filter=rl_env)
|
181 |
model_ids = [x.modelId for x in models]
|
|
|
182 |
return model_ids
|
183 |
|
184 |
+
def update_leaderboard_dataset(rl_env):
|
185 |
# Get model ids associated with rl_env
|
186 |
model_ids = get_model_ids(rl_env)
|
|
|
187 |
data = []
|
188 |
for model_id in model_ids:
|
189 |
"""
|
|
|
196 |
continue
|
197 |
user_id = model_id.split('/')[0]
|
198 |
row = {}
|
199 |
+
row["User"] = user_id
|
200 |
+
row["Model"] = model_id
|
201 |
accuracy = parse_metrics_accuracy(meta)
|
202 |
mean_reward, std_reward = parse_rewards(accuracy)
|
203 |
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
|
|
206 |
row["Mean Reward"] = mean_reward
|
207 |
row["Std Reward"] = std_reward
|
208 |
data.append(row)
|
209 |
+
|
210 |
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
211 |
+
new_history = ranked_dataframe
|
212 |
+
filename = rl_env + ".csv"
|
213 |
+
new_history.to_csv(filename, index=False)
|
214 |
+
csv_path = os.path.abspath(filename)
|
215 |
+
|
216 |
+
api.upload_file(
|
217 |
+
path_or_fileobj= csv_path,
|
218 |
+
path_in_repo= filename,
|
219 |
+
repo_id="huggingface-projects/drlc-leaderboard-data",
|
220 |
+
repo_type="dataset",
|
221 |
+
commit_message="Update dataset")
|
222 |
+
|
223 |
return ranked_dataframe
|
224 |
+
|
225 |
+
def download_leaderboard_dataset():
|
226 |
+
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
|
227 |
+
return path
|
228 |
+
|
229 |
+
def get_data(rl_env, path) -> pd.DataFrame:
|
230 |
+
"""
|
231 |
+
Get data from rl_env
|
232 |
+
:return: data as a pandas DataFrame
|
233 |
+
"""
|
234 |
+
csv_path = path + "/" + rl_env + ".csv"
|
235 |
+
data = pd.read_csv(csv_path)
|
236 |
+
|
237 |
+
for index, row in data.iterrows():
|
238 |
+
user_id = row["User"]
|
239 |
+
data.loc[index, "User"] = make_clickable_user(user_id)
|
240 |
+
model_id = row["Model"]
|
241 |
+
data.loc[index, "Model"] = make_clickable_model(model_id)
|
242 |
+
|
243 |
+
return data
|
244 |
+
|
245 |
+
def get_data_no_html(rl_env, path) -> pd.DataFrame:
|
246 |
+
"""
|
247 |
+
Get data from rl_env
|
248 |
+
:return: data as a pandas DataFrame
|
249 |
+
"""
|
250 |
+
csv_path = path + "/" + rl_env + ".csv"
|
251 |
+
data = pd.read_csv(csv_path)
|
252 |
+
|
253 |
+
return data
|
254 |
|
255 |
def rank_dataframe(dataframe):
|
|
|
256 |
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
257 |
if not 'Ranking' in dataframe.columns:
|
258 |
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
|
|
261 |
return dataframe
|
262 |
|
263 |
|
264 |
+
def run_update_dataset():
|
265 |
+
for i in range(0, len(rl_envs)):
|
266 |
+
rl_env = rl_envs[i]
|
267 |
+
update_leaderboard_dataset(rl_env["rl_env"])
|
268 |
+
|
269 |
+
|
270 |
+
def filter_data(rl_env, path, user_id):
|
271 |
+
print("RL ENV", rl_env)
|
272 |
+
print("PATH", path)
|
273 |
+
print("USER ID", user_id)
|
274 |
+
data_df = get_data_no_html(rl_env, path)
|
275 |
+
print(data_df)
|
276 |
+
models = []
|
277 |
+
models = data_df[data_df["User"] == user_id]
|
278 |
+
|
279 |
+
for index, row in models.iterrows():
|
280 |
+
user_id = row["User"]
|
281 |
+
models.loc[index, "User"] = make_clickable_user(user_id)
|
282 |
+
model_id = row["Model"]
|
283 |
+
models.loc[index, "Model"] = make_clickable_model(model_id)
|
284 |
+
|
285 |
+
|
286 |
+
print(models)
|
287 |
+
return models
|
288 |
+
|
289 |
with block:
|
290 |
gr.Markdown(f"""
|
291 |
# π The Deep Reinforcement Learning Course Leaderboard π
|
292 |
|
293 |
+
This is the leaderboard of trained agents during the <a href="https://huggingface.co/learn/deep-rl-course/unit0/introduction?fw=pt">Deep Reinforcement Learning Course</a>. A free course from beginner to expert.
|
294 |
|
295 |
+
### We only display the best 100 models
|
296 |
+
If you want to **find yours, type your user id and click on Search my models.**
|
297 |
+
You **can click on the model's name** to be redirected to its model card, including documentation.
|
298 |
|
299 |
+
### How are the results calculated?
|
300 |
We use **lower bound result to sort the models: mean_reward - std_reward.**
|
301 |
|
302 |
+
### I can't find my model π
|
303 |
+
The leaderboard is **updated every hour** if you can't find your models, just wait for the next update.
|
304 |
|
305 |
+
### The Deep RL Course
|
306 |
π€ You want to try to train your agents? <a href="https://huggingface.co/deep-rl-course/unit0/introduction?fw=pt" target="_blank"> Check the Hugging Face free Deep Reinforcement Learning Course π€ </a>.
|
307 |
+
|
|
|
|
|
308 |
π§ There is an **environment missing?** Please open an issue.
|
|
|
|
|
309 |
""")
|
310 |
+
path_ = download_leaderboard_dataset()
|
311 |
+
|
312 |
for i in range(0, len(rl_envs)):
|
313 |
rl_env = rl_envs[i]
|
|
|
314 |
with gr.TabItem(rl_env["rl_env_beautiful"]) as rl_tab:
|
315 |
with gr.Row():
|
316 |
markdown = """
|
|
|
318 |
|
319 |
""".format(name_leaderboard = rl_env["rl_env_beautiful"], video_link = rl_env["video_link"])
|
320 |
gr.Markdown(markdown)
|
321 |
+
#gr.Textbox(value=filter_data(rl_env["rl_env"], path_))
|
322 |
+
|
323 |
with gr.Row():
|
324 |
+
gr.Markdown("""
|
325 |
+
## Search your models
|
326 |
+
Simply type your user id to find your models
|
327 |
+
""")
|
328 |
+
|
329 |
with gr.Row():
|
330 |
+
user_id = gr.Textbox(label= "Your user id")
|
331 |
+
search_btn = gr.Button("Search my models π")
|
332 |
+
env = gr.Variable(rl_env["rl_env"])
|
333 |
+
grpath = gr.Variable(path_)
|
334 |
+
with gr.Row():
|
335 |
+
gr_dataframe = gr.components.Dataframe(value=get_data(rl_env["rl_env"], path_), headers=["Ranking π", "User π€", "Model id π€", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"], row_count=(100, 'fixed'))
|
336 |
+
|
337 |
+
with gr.Row():
|
338 |
+
#gr_search_dataframe = gr.components.Dataframe(headers=["Ranking π", "User π€", "Model id π€", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"], visible=False)
|
339 |
+
search_btn.click(fn=filter_data, inputs=[env, grpath, user_id], outputs=gr_dataframe, api_name="filter_data")
|
340 |
|
341 |
block.launch()
|
342 |
|
|
|
350 |
temp = get_model_dataframe(rl_env)
|
351 |
rl_env["global"] = temp
|
352 |
print("The leaderboard has been updated")
|
353 |
+
|
354 |
+
block.launch()
|
355 |
|
356 |
scheduler = BackgroundScheduler()
|
357 |
# Refresh every hour
|
358 |
+
scheduler.add_job(func=run_update_dataset, trigger="interval", seconds=3600)
|
359 |
+
scheduler.start()
|
|