Spaces:
Running
Running
import { buildPrompt } from "$lib/buildPrompt"; | |
import { textGenerationStream } from "@huggingface/inference"; | |
import { z } from "zod"; | |
import type { Endpoint } from "../endpoints"; | |
export const endpointAwsParametersSchema = z.object({ | |
weight: z.number().int().positive().default(1), | |
model: z.any(), | |
type: z.literal("aws"), | |
url: z.string().url(), | |
accessKey: z.string().min(1), | |
secretKey: z.string().min(1), | |
sessionToken: z.string().optional(), | |
service: z.union([z.literal("sagemaker"), z.literal("lambda")]).default("sagemaker"), | |
region: z.string().optional(), | |
}); | |
export async function endpointAws( | |
input: z.input<typeof endpointAwsParametersSchema> | |
): Promise<Endpoint> { | |
let AwsClient; | |
try { | |
AwsClient = (await import("aws4fetch")).AwsClient; | |
} catch (e) { | |
throw new Error("Failed to import aws4fetch"); | |
} | |
const { url, accessKey, secretKey, sessionToken, model, region, service } = | |
endpointAwsParametersSchema.parse(input); | |
const aws = new AwsClient({ | |
accessKeyId: accessKey, | |
secretAccessKey: secretKey, | |
sessionToken, | |
service, | |
region, | |
}); | |
return async ({ conversation }) => { | |
const prompt = await buildPrompt({ | |
messages: conversation.messages, | |
webSearch: conversation.messages[conversation.messages.length - 1].webSearch, | |
preprompt: conversation.preprompt, | |
model, | |
}); | |
return textGenerationStream( | |
{ | |
parameters: { ...model.parameters, return_full_text: false }, | |
model: url, | |
inputs: prompt, | |
}, | |
{ | |
use_cache: false, | |
fetch: aws.fetch.bind(aws) as typeof fetch, | |
} | |
); | |
}; | |
} | |
export default endpointAws; | |