Spaces:
Running
Running
import { dot } from "@xenova/transformers"; | |
import type { EmbeddingBackendModel } from "$lib/server/embeddingModels"; | |
import type { Embedding } from "$lib/server/embeddingEndpoints/embeddingEndpoints"; | |
// see here: https://github.com/nmslib/hnswlib/blob/359b2ba87358224963986f709e593d799064ace6/README.md?plain=1#L34 | |
function innerProduct(embeddingA: Embedding, embeddingB: Embedding) { | |
return 1.0 - dot(embeddingA, embeddingB); | |
} | |
export async function findSimilarSentences( | |
embeddingModel: EmbeddingBackendModel, | |
query: string, | |
sentences: string[], | |
{ topK = 5 }: { topK: number } | |
): Promise<Embedding> { | |
const inputs = [ | |
`${embeddingModel.preQuery}${query}`, | |
...sentences.map((sentence) => `${embeddingModel.prePassage}${sentence}`), | |
]; | |
const embeddingEndpoint = await embeddingModel.getEndpoint(); | |
const output = await embeddingEndpoint({ inputs }); | |
const queryEmbedding: Embedding = output[0]; | |
const sentencesEmbeddings: Embedding[] = output.slice(1); | |
const distancesFromQuery: { distance: number; index: number }[] = [...sentencesEmbeddings].map( | |
(sentenceEmbedding: Embedding, index: number) => { | |
return { | |
distance: innerProduct(queryEmbedding, sentenceEmbedding), | |
index, | |
}; | |
} | |
); | |
distancesFromQuery.sort((a, b) => { | |
return a.distance - b.distance; | |
}); | |
// Return the indexes of the closest topK sentences | |
return distancesFromQuery.slice(0, topK).map((item) => item.index); | |
} | |