Spaces:
Running
Running
import { | |
HF_TOKEN, | |
HF_API_ROOT, | |
MODELS, | |
OLD_MODELS, | |
TASK_MODEL, | |
HF_ACCESS_TOKEN, | |
} from "$env/static/private"; | |
import type { ChatTemplateInput } from "$lib/types/Template"; | |
import { compileTemplate } from "$lib/utils/template"; | |
import { z } from "zod"; | |
import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints"; | |
import endpointTgi from "./endpoints/tgi/endpointTgi"; | |
import { sum } from "$lib/utils/sum"; | |
import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels"; | |
import type { PreTrainedTokenizer } from "@xenova/transformers"; | |
import JSON5 from "json5"; | |
import { getTokenizer } from "$lib/utils/getTokenizer"; | |
type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>; | |
const modelConfig = z.object({ | |
/** Used as an identifier in DB */ | |
id: z.string().optional(), | |
/** Used to link to the model page, and for inference */ | |
name: z.string().default(""), | |
displayName: z.string().min(1).optional(), | |
description: z.string().min(1).optional(), | |
logoUrl: z.string().url().optional(), | |
websiteUrl: z.string().url().optional(), | |
modelUrl: z.string().url().optional(), | |
tokenizer: z | |
.union([ | |
z.string(), | |
z.object({ | |
tokenizerUrl: z.string().url(), | |
tokenizerConfigUrl: z.string().url(), | |
}), | |
]) | |
.optional(), | |
datasetName: z.string().min(1).optional(), | |
datasetUrl: z.string().url().optional(), | |
preprompt: z.string().default(""), | |
prepromptUrl: z.string().url().optional(), | |
chatPromptTemplate: z.string().optional(), | |
promptExamples: z | |
.array( | |
z.object({ | |
title: z.string().min(1), | |
prompt: z.string().min(1), | |
}) | |
) | |
.optional(), | |
endpoints: z.array(endpointSchema).optional(), | |
parameters: z | |
.object({ | |
temperature: z.number().min(0).max(1).optional(), | |
truncate: z.number().int().positive().optional(), | |
max_new_tokens: z.number().int().positive().optional(), | |
stop: z.array(z.string()).optional(), | |
top_p: z.number().positive().optional(), | |
top_k: z.number().positive().optional(), | |
repetition_penalty: z.number().min(-2).max(2).optional(), | |
}) | |
.passthrough() | |
.optional(), | |
multimodal: z.boolean().default(false), | |
unlisted: z.boolean().default(false), | |
embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(), | |
}); | |
const modelsRaw = z.array(modelConfig).parse(JSON5.parse(MODELS)); | |
async function getChatPromptRender( | |
m: z.infer<typeof modelConfig> | |
): Promise<ReturnType<typeof compileTemplate<ChatTemplateInput>>> { | |
if (m.chatPromptTemplate) { | |
return compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m); | |
} | |
let tokenizer: PreTrainedTokenizer; | |
if (!m.tokenizer) { | |
return compileTemplate<ChatTemplateInput>( | |
"{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}", | |
m | |
); | |
} | |
try { | |
tokenizer = await getTokenizer(m.tokenizer); | |
} catch (e) { | |
throw Error( | |
"Failed to load tokenizer for model " + | |
m.name + | |
" consider setting chatPromptTemplate manually or making sure the model is available on the hub." | |
); | |
} | |
const renderTemplate = ({ messages, preprompt }: ChatTemplateInput) => { | |
let formattedMessages: { role: string; content: string }[] = messages.map((message) => ({ | |
content: message.content, | |
role: message.from, | |
})); | |
if (preprompt) { | |
formattedMessages = [ | |
{ | |
role: "system", | |
content: preprompt, | |
}, | |
...formattedMessages, | |
]; | |
} | |
const output = tokenizer.apply_chat_template(formattedMessages, { | |
tokenize: false, | |
add_generation_prompt: true, | |
}); | |
if (typeof output !== "string") { | |
throw new Error("Failed to apply chat template, the output is not a string"); | |
} | |
return output; | |
}; | |
return renderTemplate; | |
} | |
const processModel = async (m: z.infer<typeof modelConfig>) => ({ | |
...m, | |
chatPromptRender: await getChatPromptRender(m), | |
id: m.id || m.name, | |
displayName: m.displayName || m.name, | |
preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt, | |
parameters: { ...m.parameters, stop_sequences: m.parameters?.stop }, | |
}); | |
const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({ | |
...m, | |
getEndpoint: async (): Promise<Endpoint> => { | |
if (!m.endpoints) { | |
return endpointTgi({ | |
type: "tgi", | |
url: `${HF_API_ROOT}/${m.name}`, | |
accessToken: HF_TOKEN ?? HF_ACCESS_TOKEN, | |
weight: 1, | |
model: m, | |
}); | |
} | |
const totalWeight = sum(m.endpoints.map((e) => e.weight)); | |
let random = Math.random() * totalWeight; | |
for (const endpoint of m.endpoints) { | |
if (random < endpoint.weight) { | |
const args = { ...endpoint, model: m }; | |
switch (args.type) { | |
case "tgi": | |
return endpoints.tgi(args); | |
case "anthropic": | |
return endpoints.anthropic(args); | |
case "aws": | |
return await endpoints.aws(args); | |
case "openai": | |
return await endpoints.openai(args); | |
case "llamacpp": | |
return endpoints.llamacpp(args); | |
case "ollama": | |
return endpoints.ollama(args); | |
case "vertex": | |
return await endpoints.vertex(args); | |
case "cloudflare": | |
return await endpoints.cloudflare(args); | |
case "cohere": | |
return await endpoints.cohere(args); | |
default: | |
// for legacy reason | |
return endpoints.tgi(args); | |
} | |
} | |
random -= endpoint.weight; | |
} | |
throw new Error(`Failed to select endpoint`); | |
}, | |
}); | |
export const models = await Promise.all(modelsRaw.map((e) => processModel(e).then(addEndpoint))); | |
export const defaultModel = models[0]; | |
// Models that have been deprecated | |
export const oldModels = OLD_MODELS | |
? z | |
.array( | |
z.object({ | |
id: z.string().optional(), | |
name: z.string().min(1), | |
displayName: z.string().min(1).optional(), | |
}) | |
) | |
.parse(JSON5.parse(OLD_MODELS)) | |
.map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name })) | |
: []; | |
export const validateModel = (_models: BackendModel[]) => { | |
// Zod enum function requires 2 parameters | |
return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]); | |
}; | |
// if `TASK_MODEL` is string & name of a model in `MODELS`, then we use `MODELS[TASK_MODEL]`, else we try to parse `TASK_MODEL` as a model config itself | |
export const smallModel = TASK_MODEL | |
? (models.find((m) => m.name === TASK_MODEL) || | |
(await processModel(modelConfig.parse(JSON5.parse(TASK_MODEL))).then((m) => | |
addEndpoint(m) | |
))) ?? | |
defaultModel | |
: defaultModel; | |
export type BackendModel = Optional< | |
typeof defaultModel, | |
"preprompt" | "parameters" | "multimodal" | "unlisted" | |
>; | |