open-webui-rag-system / vector_store.py
hugging2021's picture
Upload folder using huggingface_hub
5f3b20a verified
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
๋ฒกํ„ฐ ์Šคํ† ์–ด ๋ชจ๋“ˆ: ๋ฌธ์„œ ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ ๋ฐ ๋ฒกํ„ฐ ์Šคํ† ์–ด ๊ตฌ์ถ•
๋ฐฐ์น˜ ์ฒ˜๋ฆฌ ์ ์šฉ์œผ๋กœ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ์ตœ์ ํ™” + ๊ธด ์ฒญํฌ ์˜ค๋ฅ˜ ๋ฐฉ์ง€
"""
import os
import argparse
import logging
from tqdm import tqdm
from langchain_community.vectorstores import FAISS
from langchain.schema.document import Document
from langchain_huggingface import HuggingFaceEmbeddings
# ๋กœ๊น… ์„ค์ • - ๋ถˆํ•„์š”ํ•œ ๊ฒฝ๊ณ  ๋ฉ”์‹œ์ง€ ์ œ๊ฑฐ
logging.getLogger().setLevel(logging.ERROR)
def get_embeddings(model_name="intfloat/multilingual-e5-large-instruct", device="cuda"):
return HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs={'device': device},
encode_kwargs={'normalize_embeddings': True}
)
def build_vector_store_batch(documents, embeddings, save_path="vector_db", batch_size=16):
if not documents:
raise ValueError("๋ฌธ์„œ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค. ๋ฌธ์„œ๊ฐ€ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ๋กœ๋“œ๋˜์—ˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”.")
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
# ๋ฐฐ์น˜๋กœ ๋ถ„ํ• 
batches = [texts[i:i + batch_size] for i in range(0, len(texts), batch_size)]
metadata_batches = [metadatas[i:i + batch_size] for i in range(0, len(metadatas), batch_size)]
print(f"Processing {len(batches)} batches with size {batch_size}")
print(f"Initializing vector store with batch 1/{len(batches)}")
# โœ… from_texts ๋Œ€์‹  from_documents ์‚ฌ์šฉ (๊ธธ์ด ๋ฌธ์ œ ๋ฐฉ์ง€)
first_docs = [
Document(page_content=text, metadata=meta)
for text, meta in zip(batches[0], metadata_batches[0])
]
vectorstore = FAISS.from_documents(first_docs, embeddings)
# ๋‚˜๋จธ์ง€ ๋ฐฐ์น˜ ์ถ”๊ฐ€
for i in tqdm(range(1, len(batches)), desc="Processing batches"):
try:
docs_batch = [
Document(page_content=text, metadata=meta)
for text, meta in zip(batches[i], metadata_batches[i])
]
vectorstore.add_documents(docs_batch)
if i % 10 == 0:
temp_save_path = f"{save_path}_temp"
os.makedirs(os.path.dirname(temp_save_path) if os.path.dirname(temp_save_path) else '.', exist_ok=True)
vectorstore.save_local(temp_save_path)
print(f"Temporary vector store saved to {temp_save_path} after batch {i}")
except Exception as e:
print(f"Error processing batch {i}: {e}")
error_save_path = f"{save_path}_error_at_batch_{i}"
os.makedirs(os.path.dirname(error_save_path) if os.path.dirname(error_save_path) else '.', exist_ok=True)
vectorstore.save_local(error_save_path)
print(f"Partial vector store saved to {error_save_path}")
raise
os.makedirs(os.path.dirname(save_path) if os.path.dirname(save_path) else '.', exist_ok=True)
vectorstore.save_local(save_path)
print(f"Vector store saved to {save_path}")
return vectorstore
def load_vector_store(embeddings, load_path="vector_db"):
if not os.path.exists(load_path):
raise FileNotFoundError(f"๋ฒกํ„ฐ ์Šคํ† ์–ด๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค: {load_path}")
return FAISS.load_local(load_path, embeddings, allow_dangerous_deserialization=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="๋ฒกํ„ฐ ์Šคํ† ์–ด ๊ตฌ์ถ•")
parser.add_argument("--folder", type=str, default="dataset", help="๋ฌธ์„œ๊ฐ€ ์žˆ๋Š” ํด๋” ๊ฒฝ๋กœ")
parser.add_argument("--save_path", type=str, default="vector_db", help="๋ฒกํ„ฐ ์Šคํ† ์–ด ์ €์žฅ ๊ฒฝ๋กœ")
parser.add_argument("--batch_size", type=int, default=16, help="๋ฐฐ์น˜ ํฌ๊ธฐ")
parser.add_argument("--model_name", type=str, default="intfloat/multilingual-e5-large-instruct", help="์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ์ด๋ฆ„")
parser.add_argument("--device", type=str, default="cuda", help="์‚ฌ์šฉํ•  ๋””๋ฐ”์ด์Šค ('cuda' ๋˜๋Š” 'cpu')")
args = parser.parse_args()
# ๋ฌธ์„œ ์ฒ˜๋ฆฌ ๋ชจ๋“ˆ import
from document_processor import load_documents, split_documents
# ๋ฌธ์„œ ๋กœ๋“œ ๋ฐ ๋ถ„ํ• 
documents = load_documents(args.folder)
chunks = split_documents(documents, chunk_size=800, chunk_overlap=100)
# ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋“œ
embeddings = get_embeddings(model_name=args.model_name, device=args.device)
# ๋ฒกํ„ฐ ์Šคํ† ์–ด ๊ตฌ์ถ•
build_vector_store_batch(chunks, embeddings, args.save_path, args.batch_size)