|
|
|
"""Contains the implementation of discriminator described in PGGAN. |
|
|
|
Paper: https://arxiv.org/pdf/1710.10196.pdf |
|
|
|
Official TensorFlow implementation: |
|
https://github.com/tkarras/progressive_growing_of_gans |
|
""" |
|
|
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
__all__ = ['PGGANDiscriminator'] |
|
|
|
|
|
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024] |
|
|
|
|
|
_INIT_RES = 4 |
|
|
|
|
|
_WSCALE_GAIN = np.sqrt(2.0) |
|
|
|
|
|
class PGGANDiscriminator(nn.Module): |
|
"""Defines the discriminator network in PGGAN. |
|
|
|
NOTE: The discriminator takes images with `RGB` channel order and pixel |
|
range [-1, 1] as inputs. |
|
|
|
Settings for the network: |
|
|
|
(1) resolution: The resolution of the input image. |
|
(2) image_channels: Number of channels of the input image. (default: 3) |
|
(3) label_size: Size of the additional label for conditional generation. |
|
(default: 0) |
|
(4) fused_scale: Whether to fused `conv2d` and `downsample` together, |
|
resulting in `conv2d` with strides. (default: False) |
|
(5) use_wscale: Whether to use weight scaling. (default: True) |
|
(6) minibatch_std_group_size: Group size for the minibatch standard |
|
deviation layer. 0 means disable. (default: 16) |
|
(7) fmaps_base: Factor to control number of feature maps for each layer. |
|
(default: 16 << 10) |
|
(8) fmaps_max: Maximum number of feature maps in each layer. (default: 512) |
|
""" |
|
|
|
def __init__(self, |
|
resolution, |
|
image_channels=3, |
|
label_size=0, |
|
fused_scale=False, |
|
use_wscale=True, |
|
minibatch_std_group_size=16, |
|
fmaps_base=16 << 10, |
|
fmaps_max=512): |
|
"""Initializes with basic settings. |
|
|
|
Raises: |
|
ValueError: If the `resolution` is not supported. |
|
""" |
|
super().__init__() |
|
|
|
if resolution not in _RESOLUTIONS_ALLOWED: |
|
raise ValueError(f'Invalid resolution: `{resolution}`!\n' |
|
f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.') |
|
|
|
self.init_res = _INIT_RES |
|
self.init_res_log2 = int(np.log2(self.init_res)) |
|
self.resolution = resolution |
|
self.final_res_log2 = int(np.log2(self.resolution)) |
|
self.image_channels = image_channels |
|
self.label_size = label_size |
|
self.fused_scale = fused_scale |
|
self.use_wscale = use_wscale |
|
self.minibatch_std_group_size = minibatch_std_group_size |
|
self.fmaps_base = fmaps_base |
|
self.fmaps_max = fmaps_max |
|
|
|
|
|
self.register_buffer('lod', torch.zeros(())) |
|
self.pth_to_tf_var_mapping = {'lod': 'lod'} |
|
|
|
for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1): |
|
res = 2 ** res_log2 |
|
block_idx = self.final_res_log2 - res_log2 |
|
|
|
|
|
self.add_module( |
|
f'input{block_idx}', |
|
ConvBlock(in_channels=self.image_channels, |
|
out_channels=self.get_nf(res), |
|
kernel_size=1, |
|
padding=0, |
|
use_wscale=self.use_wscale)) |
|
self.pth_to_tf_var_mapping[f'input{block_idx}.weight'] = ( |
|
f'FromRGB_lod{block_idx}/weight') |
|
self.pth_to_tf_var_mapping[f'input{block_idx}.bias'] = ( |
|
f'FromRGB_lod{block_idx}/bias') |
|
|
|
|
|
if res != self.init_res: |
|
self.add_module( |
|
f'layer{2 * block_idx}', |
|
ConvBlock(in_channels=self.get_nf(res), |
|
out_channels=self.get_nf(res), |
|
use_wscale=self.use_wscale)) |
|
tf_layer0_name = 'Conv0' |
|
self.add_module( |
|
f'layer{2 * block_idx + 1}', |
|
ConvBlock(in_channels=self.get_nf(res), |
|
out_channels=self.get_nf(res // 2), |
|
downsample=True, |
|
fused_scale=self.fused_scale, |
|
use_wscale=self.use_wscale)) |
|
tf_layer1_name = 'Conv1_down' if self.fused_scale else 'Conv1' |
|
|
|
|
|
else: |
|
self.add_module( |
|
f'layer{2 * block_idx}', |
|
ConvBlock( |
|
in_channels=self.get_nf(res), |
|
out_channels=self.get_nf(res), |
|
use_wscale=self.use_wscale, |
|
minibatch_std_group_size=self.minibatch_std_group_size)) |
|
tf_layer0_name = 'Conv' |
|
self.add_module( |
|
f'layer{2 * block_idx + 1}', |
|
DenseBlock(in_channels=self.get_nf(res) * res * res, |
|
out_channels=self.get_nf(res // 2), |
|
use_wscale=self.use_wscale)) |
|
tf_layer1_name = 'Dense0' |
|
|
|
self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.weight'] = ( |
|
f'{res}x{res}/{tf_layer0_name}/weight') |
|
self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.bias'] = ( |
|
f'{res}x{res}/{tf_layer0_name}/bias') |
|
self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.weight'] = ( |
|
f'{res}x{res}/{tf_layer1_name}/weight') |
|
self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.bias'] = ( |
|
f'{res}x{res}/{tf_layer1_name}/bias') |
|
|
|
|
|
self.add_module( |
|
f'layer{2 * block_idx + 2}', |
|
DenseBlock(in_channels=self.get_nf(res // 2), |
|
out_channels=1 + self.label_size, |
|
use_wscale=self.use_wscale, |
|
wscale_gain=1.0, |
|
activation_type='linear')) |
|
self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 2}.weight'] = ( |
|
f'{res}x{res}/Dense1/weight') |
|
self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 2}.bias'] = ( |
|
f'{res}x{res}/Dense1/bias') |
|
|
|
self.downsample = DownsamplingLayer() |
|
|
|
def get_nf(self, res): |
|
"""Gets number of feature maps according to current resolution.""" |
|
return min(self.fmaps_base // res, self.fmaps_max) |
|
|
|
def forward(self, image, lod=None, **_unused_kwargs): |
|
expected_shape = (self.image_channels, self.resolution, self.resolution) |
|
if image.ndim != 4 or image.shape[1:] != expected_shape: |
|
raise ValueError(f'The input tensor should be with shape ' |
|
f'[batch_size, channel, height, width], where ' |
|
f'`channel` equals to {self.image_channels}, ' |
|
f'`height`, `width` equal to {self.resolution}!\n' |
|
f'But `{image.shape}` is received!') |
|
|
|
lod = self.lod.cpu().tolist() if lod is None else lod |
|
if lod + self.init_res_log2 > self.final_res_log2: |
|
raise ValueError(f'Maximum level-of-detail (lod) is ' |
|
f'{self.final_res_log2 - self.init_res_log2}, ' |
|
f'but `{lod}` is received!') |
|
|
|
lod = self.lod.cpu().tolist() |
|
for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1): |
|
block_idx = current_lod = self.final_res_log2 - res_log2 |
|
if current_lod <= lod < current_lod + 1: |
|
x = self.__getattr__(f'input{block_idx}')(image) |
|
elif current_lod - 1 < lod < current_lod: |
|
alpha = lod - np.floor(lod) |
|
x = (self.__getattr__(f'input{block_idx}')(image) * alpha + |
|
x * (1 - alpha)) |
|
if lod < current_lod + 1: |
|
x = self.__getattr__(f'layer{2 * block_idx}')(x) |
|
x = self.__getattr__(f'layer{2 * block_idx + 1}')(x) |
|
if lod > current_lod: |
|
image = self.downsample(image) |
|
x = self.__getattr__(f'layer{2 * block_idx + 2}')(x) |
|
return x |
|
|
|
|
|
class MiniBatchSTDLayer(nn.Module): |
|
"""Implements the minibatch standard deviation layer.""" |
|
|
|
def __init__(self, group_size=16, epsilon=1e-8): |
|
super().__init__() |
|
self.group_size = group_size |
|
self.epsilon = epsilon |
|
|
|
def forward(self, x): |
|
if self.group_size <= 1: |
|
return x |
|
group_size = min(self.group_size, x.shape[0]) |
|
y = x.view(group_size, -1, x.shape[1], x.shape[2], x.shape[3]) |
|
y = y - torch.mean(y, dim=0, keepdim=True) |
|
y = torch.mean(y ** 2, dim=0) |
|
y = torch.sqrt(y + self.epsilon) |
|
y = torch.mean(y, dim=[1, 2, 3], keepdim=True) |
|
y = y.repeat(group_size, 1, x.shape[2], x.shape[3]) |
|
return torch.cat([x, y], dim=1) |
|
|
|
|
|
class DownsamplingLayer(nn.Module): |
|
"""Implements the downsampling layer. |
|
|
|
Basically, this layer can be used to downsample feature maps with average |
|
pooling. |
|
""" |
|
|
|
def __init__(self, scale_factor=2): |
|
super().__init__() |
|
self.scale_factor = scale_factor |
|
|
|
def forward(self, x): |
|
if self.scale_factor <= 1: |
|
return x |
|
return F.avg_pool2d(x, |
|
kernel_size=self.scale_factor, |
|
stride=self.scale_factor, |
|
padding=0) |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
"""Implements the convolutional block. |
|
|
|
Basically, this block executes minibatch standard deviation layer (if |
|
needed), convolutional layer, activation layer, and downsampling layer ( |
|
if needed) in sequence. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
add_bias=True, |
|
downsample=False, |
|
fused_scale=False, |
|
use_wscale=True, |
|
wscale_gain=_WSCALE_GAIN, |
|
activation_type='lrelu', |
|
minibatch_std_group_size=0): |
|
"""Initializes with block settings. |
|
|
|
Args: |
|
in_channels: Number of channels of the input tensor. |
|
out_channels: Number of channels of the output tensor. |
|
kernel_size: Size of the convolutional kernels. (default: 3) |
|
stride: Stride parameter for convolution operation. (default: 1) |
|
padding: Padding parameter for convolution operation. (default: 1) |
|
add_bias: Whether to add bias onto the convolutional result. |
|
(default: True) |
|
downsample: Whether to downsample the result after convolution. |
|
(default: False) |
|
fused_scale: Whether to fused `conv2d` and `downsample` together, |
|
resulting in `conv2d` with strides. (default: False) |
|
use_wscale: Whether to use weight scaling. (default: True) |
|
wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN) |
|
activation_type: Type of activation. Support `linear` and `lrelu`. |
|
(default: `lrelu`) |
|
minibatch_std_group_size: Group size for the minibatch standard |
|
deviation layer. 0 means disable. (default: 0) |
|
|
|
Raises: |
|
NotImplementedError: If the `activation_type` is not supported. |
|
""" |
|
super().__init__() |
|
|
|
if minibatch_std_group_size > 1: |
|
in_channels = in_channels + 1 |
|
self.mbstd = MiniBatchSTDLayer(group_size=minibatch_std_group_size) |
|
else: |
|
self.mbstd = nn.Identity() |
|
|
|
if downsample and not fused_scale: |
|
self.downsample = DownsamplingLayer() |
|
else: |
|
self.downsample = nn.Identity() |
|
|
|
if downsample and fused_scale: |
|
self.use_stride = True |
|
self.stride = 2 |
|
self.padding = 1 |
|
else: |
|
self.use_stride = False |
|
self.stride = stride |
|
self.padding = padding |
|
|
|
weight_shape = (out_channels, in_channels, kernel_size, kernel_size) |
|
fan_in = kernel_size * kernel_size * in_channels |
|
wscale = wscale_gain / np.sqrt(fan_in) |
|
if use_wscale: |
|
self.weight = nn.Parameter(torch.randn(*weight_shape)) |
|
self.wscale = wscale |
|
else: |
|
self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale) |
|
self.wscale = 1.0 |
|
|
|
if add_bias: |
|
self.bias = nn.Parameter(torch.zeros(out_channels)) |
|
else: |
|
self.bias = None |
|
|
|
if activation_type == 'linear': |
|
self.activate = nn.Identity() |
|
elif activation_type == 'lrelu': |
|
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
else: |
|
raise NotImplementedError(f'Not implemented activation function: ' |
|
f'`{activation_type}`!') |
|
|
|
def forward(self, x): |
|
x = self.mbstd(x) |
|
weight = self.weight * self.wscale |
|
if self.use_stride: |
|
weight = F.pad(weight, (1, 1, 1, 1, 0, 0, 0, 0), 'constant', 0.0) |
|
weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] + |
|
weight[:, :, 1:, :-1] + weight[:, :, :-1, :-1]) * 0.25 |
|
x = F.conv2d(x, |
|
weight=weight, |
|
bias=self.bias, |
|
stride=self.stride, |
|
padding=self.padding) |
|
x = self.activate(x) |
|
x = self.downsample(x) |
|
return x |
|
|
|
|
|
class DenseBlock(nn.Module): |
|
"""Implements the dense block. |
|
|
|
Basically, this block executes fully-connected layer, and activation layer. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
add_bias=True, |
|
use_wscale=True, |
|
wscale_gain=_WSCALE_GAIN, |
|
activation_type='lrelu'): |
|
"""Initializes with block settings. |
|
|
|
Args: |
|
in_channels: Number of channels of the input tensor. |
|
out_channels: Number of channels of the output tensor. |
|
add_bias: Whether to add bias onto the fully-connected result. |
|
(default: True) |
|
use_wscale: Whether to use weight scaling. (default: True) |
|
wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN) |
|
activation_type: Type of activation. Support `linear` and `lrelu`. |
|
(default: `lrelu`) |
|
|
|
Raises: |
|
NotImplementedError: If the `activation_type` is not supported. |
|
""" |
|
super().__init__() |
|
weight_shape = (out_channels, in_channels) |
|
wscale = wscale_gain / np.sqrt(in_channels) |
|
if use_wscale: |
|
self.weight = nn.Parameter(torch.randn(*weight_shape)) |
|
self.wscale = wscale |
|
else: |
|
self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale) |
|
self.wscale = 1.0 |
|
|
|
if add_bias: |
|
self.bias = nn.Parameter(torch.zeros(out_channels)) |
|
else: |
|
self.bias = None |
|
|
|
if activation_type == 'linear': |
|
self.activate = nn.Identity() |
|
elif activation_type == 'lrelu': |
|
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
else: |
|
raise NotImplementedError(f'Not implemented activation function: ' |
|
f'`{activation_type}`!') |
|
|
|
def forward(self, x): |
|
if x.ndim != 2: |
|
x = x.view(x.shape[0], -1) |
|
x = F.linear(x, weight=self.weight * self.wscale, bias=self.bias) |
|
x = self.activate(x) |
|
return x |
|
|