Spaces:
Running
Running
import subprocess | |
from pathlib import Path | |
import einops | |
import gradio as gr | |
import numpy as np | |
import torch | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from torch import nn | |
from torchvision.utils import save_image | |
class Generator(nn.Module): | |
def __init__(self, num_channels=4, latent_dim=100, hidden_size=64): | |
super(Generator, self).__init__() | |
self.model = nn.Sequential( | |
# input is Z, going into a convolution | |
nn.ConvTranspose2d(latent_dim, hidden_size * 8, 4, 1, 0, bias=False), | |
nn.BatchNorm2d(hidden_size * 8), | |
nn.ReLU(True), | |
# state size. (hidden_size*8) x 4 x 4 | |
nn.ConvTranspose2d(hidden_size * 8, hidden_size * 4, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(hidden_size * 4), | |
nn.ReLU(True), | |
# state size. (hidden_size*4) x 8 x 8 | |
nn.ConvTranspose2d(hidden_size * 4, hidden_size * 2, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(hidden_size * 2), | |
nn.ReLU(True), | |
# state size. (hidden_size*2) x 16 x 16 | |
nn.ConvTranspose2d(hidden_size * 2, hidden_size, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(hidden_size), | |
nn.ReLU(True), | |
# state size. (hidden_size) x 32 x 32 | |
nn.ConvTranspose2d(hidden_size, num_channels, 4, 2, 1, bias=False), | |
nn.Tanh() | |
# state size. (num_channels) x 64 x 64 | |
) | |
def forward(self, noise): | |
pixel_values = self.model(noise) | |
return pixel_values | |
model = Generator() | |
weights_path = hf_hub_download('huggingnft/dooggies', 'pytorch_model.bin') | |
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu'))) | |
def interpolate(save_dir='./lerp/', frames=100, rows=8, cols=8): | |
save_dir = Path(save_dir) | |
save_dir.mkdir(exist_ok=True, parents=True) | |
z1 = torch.randn(rows * cols, 100, 1, 1) | |
z2 = torch.randn(rows * cols, 100, 1, 1) | |
zs = [] | |
for i in range(frames): | |
alpha = i / frames | |
z = (1 - alpha) * z1 + alpha * z2 | |
zs.append(z) | |
zs += zs[::-1] # also go in reverse order to complete loop | |
frames = [] | |
for i, z in enumerate(zs): | |
imgs = model(z) | |
save_image(imgs, save_dir / f"{i:03}.png", normalize=True) | |
img = Image.open(save_dir / f"{i:03}.png").convert('RGBA') | |
img.putalpha(255) | |
frames.append(img) | |
img.save(save_dir / f"{i:03}.png") | |
frames[0].save("out.gif", format="GIF", append_images=frames, | |
save_all=True, duration=100, loop=1) | |
def predict(choice, seed): | |
torch.manual_seed(seed) | |
if choice == 'interpolation': | |
interpolate() | |
return 'out.gif' | |
else: | |
z = torch.randn(64, 100, 1, 1) | |
punks = model(z) | |
save_image(punks, "image.png", normalize=True) | |
img = Image.open(f"image.png").convert('RGBA') | |
img.putalpha(255) | |
img.save("image.png") | |
return 'image.png' | |
gr.Interface( | |
predict, | |
inputs=[ | |
gr.inputs.Dropdown(['image', 'interpolation'], label='Output Type'), | |
gr.inputs.Slider(label='Seed', minimum=0, maximum=1000, default=42), | |
], | |
outputs="image", | |
title="Cryptopunks GAN", | |
description="These CryptoPunks do not exist. You have the choice of either generating random punks, or a gif showing the interpolation between two random punk grids.", | |
article="<p style='text-align: center'><a href='https://arxiv.org/pdf/1511.06434.pdf'>Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks</a> | <a href='https://github.com/teddykoker/cryptopunks-gan'>Github Repo</a></p>", | |
examples=[["interpolation", 123], ["interpolation", 42], ["image", 456], ["image", 42]], | |
).launch(cache_examples=True) | |