Spaces:
Sleeping
Sleeping
import torch | |
# from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration | |
import gradio as gr | |
import datetime | |
""" | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "distil-whisper/distil-small.en" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
""" | |
# call a text generation model to display the audio content after identifying the word(s) in the text output | |
# import torch | |
# from transformers import pipeline | |
# from datasets import load_dataset | |
# from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# from datasets import load_dataset | |
# load model and processor | |
processor = WhisperProcessor.from_pretrained("microsoft/whisper-base-webnn") | |
model = WhisperForConditionalGeneration.from_pretrained("microsoft/whisper-base-webnn") | |
model.config.forced_decoder_ids = None | |
# load dummy dataset and read audio files | |
# ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
# sample = ds[0]["audio"] | |
""" | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
# model="openai/whisper-base", | |
model = "microsoft/whisper-base-webnn", | |
chunk_length_s=30, | |
device=device, | |
) | |
""" | |
# ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
# sample = ds[0]["audio"] | |
# prediction = pipe(sample.copy(), batch_size=8)["text"] | |
# we can also return timestamps for the predictions | |
#prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] | |
def audio2text(audio_file, prompt : list): | |
input_features = processor(audio_file, sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features | |
# generate token ids | |
predicted_ids = model.generate(input_features) | |
# decode token ids to text | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) | |
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
# prediction = pipe(audio_file, batch_size=8, return_timestamps=True)["chunks"] | |
#prediction=pipe(audio_file) | |
return transcription['text'] | |
gr.Interface(fn=audio2text, inputs=[gr.Audio(label='upload your audio file', sources='upload', type='filepath'), gr.Textbox(label="provide word(s) to search for")], outputs=[gr.Textbox(label="transcription")]).launch() | |