|
"""This file contains some base class implementation for EMA. |
|
|
|
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”). |
|
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. |
|
|
|
Reference: |
|
https://github.com/huggingface/open-muse/blob/64e1afe033717d795866ab8204484705cd4dc3f7/muse/modeling_ema.py#L8 |
|
""" |
|
|
|
import copy |
|
from typing import Any, Iterable, Optional, Union |
|
|
|
import torch |
|
|
|
|
|
class EMAModel: |
|
"""Exponential Moving Average of models weights.""" |
|
|
|
def __init__( |
|
self, |
|
parameters: Iterable[torch.nn.Parameter], |
|
decay: float = 0.9999, |
|
min_decay: float = 0.0, |
|
update_after_step: int = 0, |
|
update_every: int = 1, |
|
current_step: int = 0, |
|
use_ema_warmup: bool = False, |
|
inv_gamma: Union[float, int] = 1.0, |
|
power: Union[float, int] = 2 / 3, |
|
model_cls: Optional[Any] = None, |
|
**model_config_kwargs |
|
): |
|
""" |
|
Args: |
|
parameters (Iterable[torch.nn.Parameter]): The parameters to track. |
|
decay (float): The decay factor for the exponential moving average. |
|
min_decay (float): The minimum decay factor for the exponential moving average. |
|
update_after_step (int): The number of steps to wait before starting to update the EMA weights. |
|
update_every (int): The number of steps between each EMA update. |
|
current_step (int): The current training step. |
|
use_ema_warmup (bool): Whether to use EMA warmup. |
|
inv_gamma (float): |
|
Inverse multiplicative factor of EMA warmup. Default: 1. Only used if `use_ema_warmup` is True. |
|
power (float): Exponential factor of EMA warmup. Default: 2/3. Only used if `use_ema_warmup` is True. |
|
|
|
notes on EMA Warmup: |
|
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan |
|
to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps), |
|
gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 |
|
at 215.4k steps). |
|
""" |
|
|
|
parameters = list(parameters) |
|
self.shadow_params = [p.clone().detach() for p in parameters] |
|
self.temp_stored_params = None |
|
|
|
self.decay = decay |
|
self.min_decay = min_decay |
|
self.update_after_step = update_after_step |
|
self.update_every = update_every |
|
self.use_ema_warmup = use_ema_warmup |
|
self.inv_gamma = inv_gamma |
|
self.power = power |
|
self.optimization_step = current_step |
|
self.cur_decay_value = None |
|
|
|
self.model_cls = model_cls |
|
self.model_config_kwargs = model_config_kwargs |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, checkpoint, model_cls, **model_config_kwargs |
|
) -> "EMAModel": |
|
model = model_cls(**model_config_kwargs) |
|
model.load_pretrained_weight(checkpoint) |
|
|
|
ema_model = cls(model.parameters(), model_cls=model_cls, **model_config_kwargs) |
|
return ema_model |
|
|
|
def save_pretrained(self, path): |
|
if self.model_cls is None: |
|
raise ValueError( |
|
"`save_pretrained` can only be used if `model_cls` was defined at __init__." |
|
) |
|
|
|
if self.model_config_kwargs is None: |
|
raise ValueError( |
|
"`save_pretrained` can only be used if `model_config_kwargs` was defined at __init__." |
|
) |
|
|
|
model = self.model_cls(**self.model_config_kwargs) |
|
self.copy_to(model.parameters()) |
|
model.save_pretrained_weight(path) |
|
|
|
def set_step(self, optimization_step: int): |
|
self.optimization_step = optimization_step |
|
|
|
def get_decay(self, optimization_step: int) -> float: |
|
"""Computes the decay factor for the exponential moving average.""" |
|
step = max(0, optimization_step - self.update_after_step - 1) |
|
|
|
if step <= 0: |
|
return 0.0 |
|
|
|
if self.use_ema_warmup: |
|
cur_decay_value = 1 - (1 + step / self.inv_gamma) ** -self.power |
|
else: |
|
cur_decay_value = (1 + step) / (10 + step) |
|
|
|
cur_decay_value = min(cur_decay_value, self.decay) |
|
|
|
cur_decay_value = max(cur_decay_value, self.min_decay) |
|
return cur_decay_value |
|
|
|
@torch.no_grad() |
|
def step(self, parameters: Iterable[torch.nn.Parameter]): |
|
parameters = list(parameters) |
|
|
|
self.optimization_step += 1 |
|
|
|
if (self.optimization_step - 1) % self.update_every != 0: |
|
return |
|
|
|
|
|
decay = self.get_decay(self.optimization_step) |
|
self.cur_decay_value = decay |
|
one_minus_decay = 1 - decay |
|
|
|
for s_param, param in zip(self.shadow_params, parameters): |
|
if param.requires_grad: |
|
s_param.sub_(one_minus_decay * (s_param - param)) |
|
else: |
|
s_param.copy_(param) |
|
|
|
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None: |
|
"""Copies current averaged parameters into given collection of parameters. |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be |
|
updated with the stored moving averages. If `None`, the parameters with which this |
|
`ExponentialMovingAverage` was initialized will be used. |
|
""" |
|
parameters = list(parameters) |
|
for s_param, param in zip(self.shadow_params, parameters): |
|
param.data.copy_(s_param.to(param.device).data) |
|
|
|
def to(self, device=None, dtype=None) -> None: |
|
r"""Moves internal buffers of the ExponentialMovingAverage to `device`. |
|
|
|
Args: |
|
device: like `device` argument to `torch.Tensor.to` |
|
""" |
|
|
|
self.shadow_params = [ |
|
( |
|
p.to(device=device, dtype=dtype) |
|
if p.is_floating_point() |
|
else p.to(device=device) |
|
) |
|
for p in self.shadow_params |
|
] |
|
|
|
def state_dict(self) -> dict: |
|
r"""Returns the state of the ExponentialMovingAverage as a dict. This method is used by accelerate during |
|
checkpointing to save the ema state dict. |
|
""" |
|
|
|
|
|
|
|
return { |
|
"decay": self.decay, |
|
"min_decay": self.min_decay, |
|
"optimization_step": self.optimization_step, |
|
"update_after_step": self.update_after_step, |
|
"use_ema_warmup": self.use_ema_warmup, |
|
"inv_gamma": self.inv_gamma, |
|
"power": self.power, |
|
"shadow_params": self.shadow_params, |
|
} |
|
|
|
def store(self, parameters: Iterable[torch.nn.Parameter]) -> None: |
|
r""" |
|
Args: |
|
Save the current parameters for restoring later. |
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be |
|
temporarily stored. |
|
""" |
|
self.temp_stored_params = [param.detach().cpu().clone() for param in parameters] |
|
|
|
def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None: |
|
r"""Restores the parameters stored with the `store` method. Useful to validate |
|
the model with EMA parameters without affecting the original optimization process. |
|
Store the parameters before the `copy_to()` method. After validation (or |
|
model saving), use this to restore the former parameters. |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be |
|
updated with the stored parameters. If `None`, the parameters with which this |
|
`ExponentialMovingAverage` was initialized will be used. |
|
""" |
|
if self.temp_stored_params is None: |
|
raise RuntimeError( |
|
"This ExponentialMovingAverage has no `store()`ed weights to `restore()`" |
|
) |
|
for c_param, param in zip(self.temp_stored_params, parameters): |
|
param.data.copy_(c_param.data) |
|
|
|
|
|
self.temp_stored_params = None |
|
|
|
def load_state_dict(self, state_dict: dict) -> None: |
|
r"""Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the |
|
ema state dict. |
|
|
|
Args: |
|
state_dict (dict): EMA state. Should be an object returned |
|
from a call to :meth:`state_dict`. |
|
""" |
|
|
|
state_dict = copy.deepcopy(state_dict) |
|
|
|
self.decay = state_dict.get("decay", self.decay) |
|
if self.decay < 0.0 or self.decay > 1.0: |
|
raise ValueError("Decay must be between 0 and 1") |
|
|
|
self.min_decay = state_dict.get("min_decay", self.min_decay) |
|
if not isinstance(self.min_decay, float): |
|
raise ValueError("Invalid min_decay") |
|
|
|
self.optimization_step = state_dict.get( |
|
"optimization_step", self.optimization_step |
|
) |
|
if not isinstance(self.optimization_step, int): |
|
raise ValueError("Invalid optimization_step") |
|
|
|
self.update_after_step = state_dict.get( |
|
"update_after_step", self.update_after_step |
|
) |
|
if not isinstance(self.update_after_step, int): |
|
raise ValueError("Invalid update_after_step") |
|
|
|
self.use_ema_warmup = state_dict.get("use_ema_warmup", self.use_ema_warmup) |
|
if not isinstance(self.use_ema_warmup, bool): |
|
raise ValueError("Invalid use_ema_warmup") |
|
|
|
self.inv_gamma = state_dict.get("inv_gamma", self.inv_gamma) |
|
if not isinstance(self.inv_gamma, (float, int)): |
|
raise ValueError("Invalid inv_gamma") |
|
|
|
self.power = state_dict.get("power", self.power) |
|
if not isinstance(self.power, (float, int)): |
|
raise ValueError("Invalid power") |
|
|
|
shadow_params = state_dict.get("shadow_params", None) |
|
if shadow_params is not None: |
|
self.shadow_params = shadow_params |
|
if not isinstance(self.shadow_params, list): |
|
raise ValueError("shadow_params must be a list") |
|
if not all(isinstance(p, torch.Tensor) for p in self.shadow_params): |
|
raise ValueError("shadow_params must all be Tensors") |
|
|