|
|
|
|
|
|
|
|
|
|
|
""" |
|
Contents of this file are taken from https://github.com/CompVis/taming-transformers/blob/3ba01b241669f5ade541ce990f7650a3b8f65318/taming/models/vqgan.py |
|
[with minimal dependencies] |
|
|
|
This implementation is inference-only -- training steps and optimizer components |
|
introduce significant additional dependencies |
|
""" |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from ...utils import get_ckpt |
|
|
|
|
|
class VectorQuantizer2(nn.Module): |
|
""" |
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly |
|
avoids costly matrix multiplications and allows for post-hoc remapping of indices. |
|
""" |
|
|
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
n_e, |
|
e_dim, |
|
beta, |
|
remap=None, |
|
unknown_index="random", |
|
sane_index_shape=False, |
|
legacy=True, |
|
): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
self.legacy = legacy |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
self.unknown_index = unknown_index |
|
if self.unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed + 1 |
|
print( |
|
f"Remapping {self.n_e} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices." |
|
) |
|
else: |
|
self.re_embed = n_e |
|
|
|
self.sane_index_shape = sane_index_shape |
|
|
|
def remap_to_used(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
match = (inds[:, :, None] == used[None, None, ...]).long() |
|
new = match.argmax(-1) |
|
unknown = match.sum(2) < 1 |
|
if self.unknown_index == "random": |
|
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to( |
|
device=new.device |
|
) |
|
else: |
|
new[unknown] = self.unknown_index |
|
return new.reshape(ishape) |
|
|
|
def unmap_to_all(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
if self.re_embed > self.used.shape[0]: |
|
inds[inds >= self.used.shape[0]] = 0 |
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) |
|
return back.reshape(ishape) |
|
|
|
def forward(self, z, temp=None, rescale_logits=False, return_logits=False): |
|
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" |
|
assert rescale_logits is False, "Only for interface compatible with Gumbel" |
|
assert return_logits is False, "Only for interface compatible with Gumbel" |
|
|
|
z = z.permute(0, 2, 3, 1).contiguous() |
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
d = ( |
|
torch.sum(z_flattened**2, dim=1, keepdim=True) |
|
+ torch.sum(self.embedding.weight**2, dim=1) |
|
- 2 |
|
* torch.einsum( |
|
"bd,dn->bn", z_flattened, self.embedding.weight.transpose(0, 1) |
|
) |
|
) |
|
|
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = self.embedding(min_encoding_indices).view(z.shape) |
|
perplexity = None |
|
min_encodings = None |
|
|
|
|
|
if not self.legacy: |
|
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean( |
|
(z_q - z.detach()) ** 2 |
|
) |
|
else: |
|
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean( |
|
(z_q - z.detach()) ** 2 |
|
) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
if self.remap is not None: |
|
min_encoding_indices = min_encoding_indices.reshape( |
|
z.shape[0], -1 |
|
) |
|
min_encoding_indices = self.remap_to_used(min_encoding_indices) |
|
min_encoding_indices = min_encoding_indices.reshape(-1, 1) |
|
|
|
if self.sane_index_shape: |
|
min_encoding_indices = min_encoding_indices.reshape( |
|
z_q.shape[0], z_q.shape[2], z_q.shape[3] |
|
) |
|
|
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
|
|
if self.remap is not None: |
|
indices = indices.reshape(shape[0], -1) |
|
indices = self.unmap_to_all(indices) |
|
indices = indices.reshape(-1) |
|
|
|
|
|
z_q = self.embedding(indices) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
|
|
|
|
VectorQuantizer = VectorQuantizer2 |
|
|
|
|
|
def nonlinearity(x): |
|
|
|
return x * torch.sigmoid(x) |
|
|
|
|
|
def Normalize(in_channels, num_groups=32): |
|
return torch.nn.GroupNorm( |
|
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
x = F.interpolate(x, scale_factor=2.0, mode="nearest") |
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
|
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
if self.with_conv: |
|
pad = (0, 1, 0, 1) |
|
x = F.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
else: |
|
x = F.avg_pool2d(x, kernel_size=2, stride=2) |
|
return x |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout, |
|
temb_channels=512, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
self.norm1 = Normalize(in_channels) |
|
self.conv1 = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if temb_channels > 0: |
|
self.temb_proj = torch.nn.Linear(temb_channels, out_channels) |
|
self.norm2 = Normalize(out_channels) |
|
self.dropout = torch.nn.Dropout(dropout) |
|
self.conv2 = torch.nn.Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
else: |
|
self.nin_shortcut = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x, temb): |
|
h = x |
|
h = self.norm1(h) |
|
h = nonlinearity(h) |
|
h = self.conv1(h) |
|
|
|
if temb is not None: |
|
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] |
|
|
|
h = self.norm2(h) |
|
h = nonlinearity(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.k = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.v = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.proj_out = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = q.reshape(b, c, h * w) |
|
q = q.permute(0, 2, 1) |
|
k = k.reshape(b, c, h * w) |
|
w_ = torch.bmm(q, k) |
|
w_ = w_ * (int(c) ** (-0.5)) |
|
w_ = F.softmax(w_, dim=2) |
|
|
|
|
|
v = v.reshape(b, c, h * w) |
|
w_ = w_.permute(0, 2, 1) |
|
h_ = torch.bmm(v, w_) |
|
h_ = h_.reshape(b, c, h, w) |
|
|
|
h_ = self.proj_out(h_) |
|
|
|
return x + h_ |
|
|
|
|
|
def make_attn(in_channels, attn_type="vanilla"): |
|
assert attn_type in ["vanilla", "linear", "none"], f"attn_type {attn_type} unknown" |
|
|
|
if attn_type == "vanilla": |
|
return AttnBlock(in_channels) |
|
elif attn_type == "none": |
|
return nn.Identity(in_channels) |
|
else: |
|
raise ValueError("Unexpected attention type") |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks, |
|
attn_resolutions, |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels, |
|
resolution, |
|
z_channels, |
|
double_z=True, |
|
use_linear_attn=False, |
|
attn_type="vanilla", |
|
**ignore_kwargs, |
|
): |
|
super().__init__() |
|
if use_linear_attn: |
|
attn_type = "linear" |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
in_channels, self.ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.in_ch_mult = in_ch_mult |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, |
|
2 * z_channels if double_z else z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
def forward(self, x): |
|
|
|
temb = None |
|
|
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1], temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
hs.append(h) |
|
if i_level != self.num_resolutions - 1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks, |
|
attn_resolutions, |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels, |
|
resolution, |
|
z_channels, |
|
give_pre_end=False, |
|
tanh_out=False, |
|
use_linear_attn=False, |
|
attn_type="vanilla", |
|
**ignorekwargs, |
|
): |
|
super().__init__() |
|
if use_linear_attn: |
|
attn_type = "linear" |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
self.tanh_out = tanh_out |
|
|
|
|
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
curr_res = resolution // 2 ** (self.num_resolutions - 1) |
|
self.z_shape = (1, z_channels, curr_res, curr_res) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
z_channels, block_in, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, out_ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, z): |
|
|
|
self.last_z_shape = z.shape |
|
|
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h, temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
if self.give_pre_end: |
|
return h |
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
if self.tanh_out: |
|
h = torch.tanh(h) |
|
return h |
|
|
|
|
|
class VQModel(nn.Module): |
|
def __init__( |
|
self, |
|
ddconfig, |
|
n_embed, |
|
embed_dim, |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
image_key="image", |
|
colorize_nlabels=None, |
|
monitor=None, |
|
scheduler_config=None, |
|
lr_g_factor=1.0, |
|
remap=None, |
|
sane_index_shape=False, |
|
): |
|
super().__init__() |
|
self.image_key = image_key |
|
self.encoder = Encoder(**ddconfig) |
|
self.decoder = Decoder(**ddconfig) |
|
self.quantize = VectorQuantizer( |
|
n_embed, |
|
embed_dim, |
|
beta=0.25, |
|
remap=remap, |
|
sane_index_shape=sane_index_shape, |
|
) |
|
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) |
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) |
|
self.image_key = image_key |
|
if colorize_nlabels is not None: |
|
assert isinstance(colorize_nlabels, int) |
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) |
|
if monitor is not None: |
|
self.monitor = monitor |
|
self.scheduler_config = scheduler_config |
|
self.lr_g_factor = lr_g_factor |
|
|
|
def init_from_ckpt(self, path, ignore_keys=list()): |
|
if path.startswith("http://") or path.startswith("https://"): |
|
sd = get_ckpt(path) |
|
else: |
|
print(f"Loading checkpoint from local path: {path}") |
|
sd = torch.load(path, map_location="cpu")["state_dict"] |
|
|
|
keys = list(sd.keys()) |
|
for k in keys: |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
print(f"Deleting key {k} from state_dict.") |
|
del sd[k] |
|
|
|
self.load_state_dict(sd, strict=False) |
|
print(f"VQModel loaded from {path}") |
|
|
|
def encode(self, x): |
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
quant, emb_loss, info = self.quantize(h) |
|
return quant, emb_loss, info |
|
|
|
def decode(self, quant): |
|
quant = self.post_quant_conv(quant) |
|
dec = self.decoder(quant) |
|
return dec |
|
|
|
def decode_code(self, code_b): |
|
quant_b = self.quantize.embed_code(code_b) |
|
dec = self.decode(quant_b) |
|
return dec |
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, input): |
|
quant, diff, [_, _, img_toks] = self.encode(input) |
|
|
|
batch_size, n_channel, height, width = ( |
|
input.shape[0], |
|
quant.shape[-1], |
|
quant.shape[-2], |
|
quant.shape[-3], |
|
) |
|
codebook_entry = self.quantize.get_codebook_entry( |
|
img_toks, (batch_size, n_channel, height, width) |
|
) |
|
pixels = self.decode(codebook_entry) |
|
|
|
return pixels, img_toks, quant |
|
|
|
def get_input(self, batch, k): |
|
x = batch[k] |
|
if len(x.shape) == 3: |
|
x = x[..., None] |
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) |
|
return x.float() |
|
|
|
def get_last_layer(self): |
|
return self.decoder.conv_out.weight |
|
|
|
def log_images(self, batch, **kwargs): |
|
log = dict() |
|
x = self.get_input(batch, self.image_key) |
|
x = x.to(self.device) |
|
xrec, _ = self(x) |
|
if x.shape[1] > 3: |
|
|
|
assert xrec.shape[1] > 3 |
|
x = self.to_rgb(x) |
|
xrec = self.to_rgb(xrec) |
|
log["inputs"] = x |
|
log["reconstructions"] = xrec |
|
return log |
|
|
|
@property |
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
@property |
|
def dtype(self): |
|
return next(self.parameters()).dtype |
|
|
|
def to_rgb(self, x): |
|
assert self.image_key == "segmentation" |
|
if not hasattr(self, "colorize"): |
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) |
|
x = F.conv2d(x, weight=self.colorize) |
|
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 |
|
return x |
|
|