Upload 12 files
Browse files- .gitattributes +3 -0
- apps/.DS_Store +0 -0
- apps/demo/.DS_Store +0 -0
- apps/demo/Mesh_Segementation_MeshSegNet_17_classes_60samples_best.tar +3 -0
- apps/demo/ZOUIF2W4_upper.obj +3 -0
- apps/demo/file.obj +3 -0
- apps/demo/illu.png +3 -0
- apps/demo/pages/01_🦷 Segment.py +898 -0
- apps/demo/pages/02_📙How_it_Works.py +50 -0
- apps/demo/requirements.txt +11 -0
- apps/demo/utils/style.css +10 -0
- apps/demo/utils/teeth-295404_1280.png +0 -0
- apps/demo/ⓘ_Introduction.py +40 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
apps/demo/file.obj filter=lfs diff=lfs merge=lfs -text
|
37 |
+
apps/demo/illu.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
apps/demo/ZOUIF2W4_upper.obj filter=lfs diff=lfs merge=lfs -text
|
apps/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
apps/demo/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
apps/demo/Mesh_Segementation_MeshSegNet_17_classes_60samples_best.tar
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d2e44db8865ff3968803e86dadcf73cf9c4b738ddc35bfb3bc42c02347d7a0c
|
3 |
+
size 28825987
|
apps/demo/ZOUIF2W4_upper.obj
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:581b9a026e2ce734f6335f34aa900e8114dc33e2a83541ebd6bb26536382545e
|
3 |
+
size 18769177
|
apps/demo/file.obj
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:581b9a026e2ce734f6335f34aa900e8114dc33e2a83541ebd6bb26536382545e
|
3 |
+
size 18769177
|
apps/demo/illu.png
ADDED
Git LFS Details
|
apps/demo/pages/01_🦷 Segment.py
ADDED
@@ -0,0 +1,898 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from streamlit import session_state as session
|
2 |
+
import shutil
|
3 |
+
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
from sklearn import neighbors
|
7 |
+
from scipy.spatial import distance_matrix
|
8 |
+
from pygco import cut_from_graph
|
9 |
+
import open3d as o3d
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import matplotlib.colors as mcolors
|
12 |
+
import json
|
13 |
+
from stpyvista import stpyvista
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.autograd import Variable
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import streamlit as st
|
19 |
+
import pyvista as pv
|
20 |
+
|
21 |
+
from PIL import Image
|
22 |
+
|
23 |
+
class TeethApp:
|
24 |
+
def __init__(self):
|
25 |
+
# Font
|
26 |
+
with open("utils/style.css") as css:
|
27 |
+
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
|
28 |
+
|
29 |
+
# Logo
|
30 |
+
self.image_path = "utils/teeth-295404_1280.png"
|
31 |
+
self.image = Image.open(self.image_path)
|
32 |
+
width, height = self.image.size
|
33 |
+
scale = 12
|
34 |
+
new_width, new_height = width / scale, height / scale
|
35 |
+
self.image = self.image.resize((int(new_width), int(new_height)))
|
36 |
+
|
37 |
+
# Streamlit side navigation bar
|
38 |
+
st.sidebar.markdown("# AI ToothSeg")
|
39 |
+
st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
|
40 |
+
st.sidebar.markdown(" ")
|
41 |
+
st.sidebar.image(self.image, use_column_width=False)
|
42 |
+
st.markdown(
|
43 |
+
"""
|
44 |
+
<style>
|
45 |
+
.css-1bxukto {
|
46 |
+
background-color: rgb(255, 255, 255) ;""",
|
47 |
+
unsafe_allow_html=True,
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
class STN3d(nn.Module):
|
52 |
+
def __init__(self, channel):
|
53 |
+
super(STN3d, self).__init__()
|
54 |
+
self.conv1 = torch.nn.Conv1d(channel, 64, 1)
|
55 |
+
self.conv2 = torch.nn.Conv1d(64, 128, 1)
|
56 |
+
self.conv3 = torch.nn.Conv1d(128, 1024, 1)
|
57 |
+
self.fc1 = nn.Linear(1024, 512)
|
58 |
+
self.fc2 = nn.Linear(512, 256)
|
59 |
+
self.fc3 = nn.Linear(256, 9)
|
60 |
+
self.relu = nn.ReLU()
|
61 |
+
|
62 |
+
self.bn1 = nn.BatchNorm1d(64)
|
63 |
+
self.bn2 = nn.BatchNorm1d(128)
|
64 |
+
self.bn3 = nn.BatchNorm1d(1024)
|
65 |
+
self.bn4 = nn.BatchNorm1d(512)
|
66 |
+
self.bn5 = nn.BatchNorm1d(256)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
batchsize = x.size()[0]
|
70 |
+
x = F.relu(self.bn1(self.conv1(x)))
|
71 |
+
x = F.relu(self.bn2(self.conv2(x)))
|
72 |
+
x = F.relu(self.bn3(self.conv3(x)))
|
73 |
+
x = torch.max(x, 2, keepdim=True)[0]
|
74 |
+
x = x.view(-1, 1024)
|
75 |
+
|
76 |
+
x = F.relu(self.bn4(self.fc1(x)))
|
77 |
+
x = F.relu(self.bn5(self.fc2(x)))
|
78 |
+
x = self.fc3(x)
|
79 |
+
|
80 |
+
iden = Variable(torch.from_numpy(np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]).astype(np.float32))).view(1, 9).repeat(
|
81 |
+
batchsize, 1)
|
82 |
+
if x.is_cuda:
|
83 |
+
iden = iden.to(x.get_device())
|
84 |
+
x = x + iden
|
85 |
+
x = x.view(-1, 3, 3)
|
86 |
+
return x
|
87 |
+
|
88 |
+
class STNkd(nn.Module):
|
89 |
+
def __init__(self, k=64):
|
90 |
+
super(STNkd, self).__init__()
|
91 |
+
self.conv1 = torch.nn.Conv1d(k, 64, 1)
|
92 |
+
self.conv2 = torch.nn.Conv1d(64, 128, 1)
|
93 |
+
self.conv3 = torch.nn.Conv1d(128, 512, 1)
|
94 |
+
self.fc1 = nn.Linear(512, 256)
|
95 |
+
self.fc2 = nn.Linear(256, 128)
|
96 |
+
self.fc3 = nn.Linear(128, k * k)
|
97 |
+
self.relu = nn.ReLU()
|
98 |
+
|
99 |
+
self.bn1 = nn.BatchNorm1d(64)
|
100 |
+
self.bn2 = nn.BatchNorm1d(128)
|
101 |
+
self.bn3 = nn.BatchNorm1d(512)
|
102 |
+
self.bn4 = nn.BatchNorm1d(256)
|
103 |
+
self.bn5 = nn.BatchNorm1d(128)
|
104 |
+
|
105 |
+
self.k = k
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
batchsize = x.size()[0]
|
109 |
+
x = F.relu(self.bn1(self.conv1(x)))
|
110 |
+
x = F.relu(self.bn2(self.conv2(x)))
|
111 |
+
x = F.relu(self.bn3(self.conv3(x)))
|
112 |
+
x = torch.max(x, 2, keepdim=True)[0]
|
113 |
+
x = x.view(-1, 512)
|
114 |
+
|
115 |
+
x = F.relu(self.bn4(self.fc1(x)))
|
116 |
+
x = F.relu(self.bn5(self.fc2(x)))
|
117 |
+
x = self.fc3(x)
|
118 |
+
|
119 |
+
iden = Variable(torch.from_numpy(np.eye(self.k).flatten().astype(np.float32))).view(1, self.k * self.k).repeat(
|
120 |
+
batchsize, 1)
|
121 |
+
if x.is_cuda:
|
122 |
+
iden = iden.to(x.get_device())
|
123 |
+
x = x + iden
|
124 |
+
x = x.view(-1, self.k, self.k)
|
125 |
+
return x
|
126 |
+
|
127 |
+
class MeshSegNet(nn.Module):
|
128 |
+
def __init__(self, num_classes=17, num_channels=15, with_dropout=True, dropout_p=0.5):
|
129 |
+
super(MeshSegNet, self).__init__()
|
130 |
+
self.num_classes = num_classes
|
131 |
+
self.num_channels = num_channels
|
132 |
+
self.with_dropout = with_dropout
|
133 |
+
self.dropout_p = dropout_p
|
134 |
+
|
135 |
+
# MLP-1 [64, 64]
|
136 |
+
self.mlp1_conv1 = torch.nn.Conv1d(self.num_channels, 64, 1)
|
137 |
+
self.mlp1_conv2 = torch.nn.Conv1d(64, 64, 1)
|
138 |
+
self.mlp1_bn1 = nn.BatchNorm1d(64)
|
139 |
+
self.mlp1_bn2 = nn.BatchNorm1d(64)
|
140 |
+
# FTM (feature-transformer module)
|
141 |
+
self.fstn = STNkd(k=64)
|
142 |
+
# GLM-1 (graph-contrained learning modulus)
|
143 |
+
self.glm1_conv1_1 = torch.nn.Conv1d(64, 32, 1)
|
144 |
+
self.glm1_conv1_2 = torch.nn.Conv1d(64, 32, 1)
|
145 |
+
self.glm1_bn1_1 = nn.BatchNorm1d(32)
|
146 |
+
self.glm1_bn1_2 = nn.BatchNorm1d(32)
|
147 |
+
self.glm1_conv2 = torch.nn.Conv1d(32+32, 64, 1)
|
148 |
+
self.glm1_bn2 = nn.BatchNorm1d(64)
|
149 |
+
# MLP-2
|
150 |
+
self.mlp2_conv1 = torch.nn.Conv1d(64, 64, 1)
|
151 |
+
self.mlp2_bn1 = nn.BatchNorm1d(64)
|
152 |
+
self.mlp2_conv2 = torch.nn.Conv1d(64, 128, 1)
|
153 |
+
self.mlp2_bn2 = nn.BatchNorm1d(128)
|
154 |
+
self.mlp2_conv3 = torch.nn.Conv1d(128, 512, 1)
|
155 |
+
self.mlp2_bn3 = nn.BatchNorm1d(512)
|
156 |
+
# GLM-2 (graph-contrained learning modulus)
|
157 |
+
self.glm2_conv1_1 = torch.nn.Conv1d(512, 128, 1)
|
158 |
+
self.glm2_conv1_2 = torch.nn.Conv1d(512, 128, 1)
|
159 |
+
self.glm2_conv1_3 = torch.nn.Conv1d(512, 128, 1)
|
160 |
+
self.glm2_bn1_1 = nn.BatchNorm1d(128)
|
161 |
+
self.glm2_bn1_2 = nn.BatchNorm1d(128)
|
162 |
+
self.glm2_bn1_3 = nn.BatchNorm1d(128)
|
163 |
+
self.glm2_conv2 = torch.nn.Conv1d(128*3, 512, 1)
|
164 |
+
self.glm2_bn2 = nn.BatchNorm1d(512)
|
165 |
+
# MLP-3
|
166 |
+
self.mlp3_conv1 = torch.nn.Conv1d(64+512+512+512, 256, 1)
|
167 |
+
self.mlp3_conv2 = torch.nn.Conv1d(256, 256, 1)
|
168 |
+
self.mlp3_bn1_1 = nn.BatchNorm1d(256)
|
169 |
+
self.mlp3_bn1_2 = nn.BatchNorm1d(256)
|
170 |
+
self.mlp3_conv3 = torch.nn.Conv1d(256, 128, 1)
|
171 |
+
self.mlp3_conv4 = torch.nn.Conv1d(128, 128, 1)
|
172 |
+
self.mlp3_bn2_1 = nn.BatchNorm1d(128)
|
173 |
+
self.mlp3_bn2_2 = nn.BatchNorm1d(128)
|
174 |
+
# output
|
175 |
+
self.output_conv = torch.nn.Conv1d(128, self.num_classes, 1)
|
176 |
+
if self.with_dropout:
|
177 |
+
self.dropout = nn.Dropout(p=self.dropout_p)
|
178 |
+
|
179 |
+
def forward(self, x, a_s, a_l):
|
180 |
+
batchsize = x.size()[0]
|
181 |
+
n_pts = x.size()[2]
|
182 |
+
# MLP-1
|
183 |
+
x = F.relu(self.mlp1_bn1(self.mlp1_conv1(x)))
|
184 |
+
x = F.relu(self.mlp1_bn2(self.mlp1_conv2(x)))
|
185 |
+
# FTM
|
186 |
+
trans_feat = self.fstn(x)
|
187 |
+
x = x.transpose(2, 1)
|
188 |
+
x_ftm = torch.bmm(x, trans_feat)
|
189 |
+
# GLM-1
|
190 |
+
sap = torch.bmm(a_s, x_ftm)
|
191 |
+
sap = sap.transpose(2, 1)
|
192 |
+
x_ftm = x_ftm.transpose(2, 1)
|
193 |
+
x = F.relu(self.glm1_bn1_1(self.glm1_conv1_1(x_ftm)))
|
194 |
+
glm_1_sap = F.relu(self.glm1_bn1_2(self.glm1_conv1_2(sap)))
|
195 |
+
x = torch.cat([x, glm_1_sap], dim=1)
|
196 |
+
x = F.relu(self.glm1_bn2(self.glm1_conv2(x)))
|
197 |
+
# MLP-2
|
198 |
+
x = F.relu(self.mlp2_bn1(self.mlp2_conv1(x)))
|
199 |
+
x = F.relu(self.mlp2_bn2(self.mlp2_conv2(x)))
|
200 |
+
x_mlp2 = F.relu(self.mlp2_bn3(self.mlp2_conv3(x)))
|
201 |
+
if self.with_dropout:
|
202 |
+
x_mlp2 = self.dropout(x_mlp2)
|
203 |
+
# GLM-2
|
204 |
+
x_mlp2 = x_mlp2.transpose(2, 1)
|
205 |
+
sap_1 = torch.bmm(a_s, x_mlp2)
|
206 |
+
sap_2 = torch.bmm(a_l, x_mlp2)
|
207 |
+
x_mlp2 = x_mlp2.transpose(2, 1)
|
208 |
+
sap_1 = sap_1.transpose(2, 1)
|
209 |
+
sap_2 = sap_2.transpose(2, 1)
|
210 |
+
x = F.relu(self.glm2_bn1_1(self.glm2_conv1_1(x_mlp2)))
|
211 |
+
glm_2_sap_1 = F.relu(self.glm2_bn1_2(self.glm2_conv1_2(sap_1)))
|
212 |
+
glm_2_sap_2 = F.relu(self.glm2_bn1_3(self.glm2_conv1_3(sap_2)))
|
213 |
+
x = torch.cat([x, glm_2_sap_1, glm_2_sap_2], dim=1)
|
214 |
+
x_glm2 = F.relu(self.glm2_bn2(self.glm2_conv2(x)))
|
215 |
+
# GMP
|
216 |
+
x = torch.max(x_glm2, 2, keepdim=True)[0]
|
217 |
+
# Upsample
|
218 |
+
x = torch.nn.Upsample(n_pts)(x)
|
219 |
+
# Dense fusion
|
220 |
+
x = torch.cat([x, x_ftm, x_mlp2, x_glm2], dim=1)
|
221 |
+
# MLP-3
|
222 |
+
x = F.relu(self.mlp3_bn1_1(self.mlp3_conv1(x)))
|
223 |
+
x = F.relu(self.mlp3_bn1_2(self.mlp3_conv2(x)))
|
224 |
+
x = F.relu(self.mlp3_bn2_1(self.mlp3_conv3(x)))
|
225 |
+
if self.with_dropout:
|
226 |
+
x = self.dropout(x)
|
227 |
+
x = F.relu(self.mlp3_bn2_2(self.mlp3_conv4(x)))
|
228 |
+
# output
|
229 |
+
x = self.output_conv(x)
|
230 |
+
x = x.transpose(2,1).contiguous()
|
231 |
+
x = torch.nn.Softmax(dim=-1)(x.view(-1, self.num_classes))
|
232 |
+
x = x.view(batchsize, n_pts, self.num_classes)
|
233 |
+
|
234 |
+
return x
|
235 |
+
|
236 |
+
def clone_runoob(li1):
|
237 |
+
li_copy = li1[:]
|
238 |
+
return li_copy
|
239 |
+
|
240 |
+
# 对离群点重新进行分类
|
241 |
+
def class_inlier_outlier(label_list, mean_points,cloud, ind, label_index, points, labels):
|
242 |
+
label_change = clone_runoob(labels)
|
243 |
+
outlier_index = clone_runoob(label_index)
|
244 |
+
ind_reverse = clone_runoob(ind)
|
245 |
+
# 得到离群点的label下标
|
246 |
+
ind_reverse.reverse()
|
247 |
+
for i in ind_reverse:
|
248 |
+
outlier_index.pop(i)
|
249 |
+
|
250 |
+
# 获取离群点
|
251 |
+
inlier_cloud = cloud.select_by_index(ind)
|
252 |
+
outlier_cloud = cloud.select_by_index(ind, invert=True)
|
253 |
+
outlier_points = np.array(outlier_cloud.points)
|
254 |
+
|
255 |
+
for i in range(len(outlier_points)):
|
256 |
+
distance = []
|
257 |
+
for j in range(len(mean_points)):
|
258 |
+
dis = np.linalg.norm(outlier_points[i] - mean_points[j], ord=2) # 计算tooth和GT质心之间的距离
|
259 |
+
distance.append(dis)
|
260 |
+
min_index = distance.index(min(distance)) # 获取和离群点质心最近label的index
|
261 |
+
outlier_label = label_list[min_index] # 获取离群点应该的label
|
262 |
+
index = outlier_index[i]
|
263 |
+
label_change[index] = outlier_label
|
264 |
+
|
265 |
+
return label_change
|
266 |
+
|
267 |
+
# 利用knn算法消除离群点
|
268 |
+
def remove_outlier(points, labels):
|
269 |
+
# points = np.array(point_cloud_o3d_orign.points)
|
270 |
+
# global label_list
|
271 |
+
same_label_points = {}
|
272 |
+
|
273 |
+
same_label_index = {}
|
274 |
+
|
275 |
+
mean_points = [] # 所有label种类对应点云的质心坐标
|
276 |
+
|
277 |
+
label_list = []
|
278 |
+
for i in range(len(labels)):
|
279 |
+
label_list.append(labels[i])
|
280 |
+
label_list = list(set(label_list)) # 去重获从小到大排序取GT_label=[0, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27]
|
281 |
+
label_list.sort()
|
282 |
+
label_list = label_list[1:]
|
283 |
+
|
284 |
+
for i in label_list:
|
285 |
+
key = i
|
286 |
+
points_list = []
|
287 |
+
all_label_index = []
|
288 |
+
for j in range(len(labels)):
|
289 |
+
if labels[j] == i:
|
290 |
+
points_list.append(points[j].tolist())
|
291 |
+
all_label_index.append(j) # 得到label为 i 的点对应的label的下标
|
292 |
+
same_label_points[key] = points_list
|
293 |
+
same_label_index[key] = all_label_index
|
294 |
+
|
295 |
+
tooth_mean = np.mean(points_list, axis=0)
|
296 |
+
mean_points.append(tooth_mean)
|
297 |
+
# print(mean_points)
|
298 |
+
|
299 |
+
for i in label_list:
|
300 |
+
points_array = same_label_points[i]
|
301 |
+
# 建立一个o3d的点云对象
|
302 |
+
pcd = o3d.geometry.PointCloud()
|
303 |
+
# 使用Vector3dVector方法转换
|
304 |
+
pcd.points = o3d.utility.Vector3dVector(points_array)
|
305 |
+
|
306 |
+
# 对label i 对应的点云进行统计离群值去除,找出离群点并显示
|
307 |
+
# 统计式离群点移除
|
308 |
+
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=200, std_ratio=2.0) # cl是选中的点,ind是选中点index
|
309 |
+
# 可视化
|
310 |
+
# display_inlier_outlier(pcd, ind)
|
311 |
+
|
312 |
+
# 对分出来的离群点重新分类
|
313 |
+
label_index = same_label_index[i]
|
314 |
+
labels = class_inlier_outlier(label_list, mean_points, pcd, ind, label_index, points, labels)
|
315 |
+
# print(f"label_change{labels[4400]}")
|
316 |
+
|
317 |
+
return labels
|
318 |
+
|
319 |
+
|
320 |
+
# 消除离群点,保存最后的输出
|
321 |
+
def remove_outlier_main(jaw, pcd_points, labels, instances_labels):
|
322 |
+
# point_cloud_o3d_orign = o3d.io.read_point_cloud('E:/tooth/data/MeshSegNet-master/test_upsample_15/upsample_01K17AN8_upper_refined.pcd')
|
323 |
+
# 原始点
|
324 |
+
points = pcd_points.copy()
|
325 |
+
label = remove_outlier(points, labels)
|
326 |
+
|
327 |
+
# 保存json文件
|
328 |
+
label_dict = {}
|
329 |
+
label_dict["id_patient"] = ""
|
330 |
+
label_dict["jaw"] = jaw
|
331 |
+
label_dict["labels"] = label.tolist()
|
332 |
+
label_dict["instances"] = instances_labels.tolist()
|
333 |
+
b = json.dumps(label_dict)
|
334 |
+
with open('dental-labels4' + '.json', 'w') as f_obj:
|
335 |
+
f_obj.write(b)
|
336 |
+
f_obj.close()
|
337 |
+
|
338 |
+
|
339 |
+
same_points_list = {}
|
340 |
+
|
341 |
+
|
342 |
+
# 体素下采样
|
343 |
+
def voxel_filter(point_cloud, leaf_size):
|
344 |
+
same_points_list = {}
|
345 |
+
filtered_points = []
|
346 |
+
# step1 计算边界点
|
347 |
+
x_max, y_max, z_max = np.amax(point_cloud, axis=0) # 计算 x,y,z三个维度的最值
|
348 |
+
x_min, y_min, z_min = np.amin(point_cloud, axis=0)
|
349 |
+
|
350 |
+
# step2 确定体素的尺寸
|
351 |
+
size_r = leaf_size
|
352 |
+
|
353 |
+
# step3 计算每个 volex的维度 voxel grid
|
354 |
+
Dx = (x_max - x_min) // size_r + 1
|
355 |
+
Dy = (y_max - y_min) // size_r + 1
|
356 |
+
Dz = (z_max - z_min) // size_r + 1
|
357 |
+
|
358 |
+
# print("Dx x Dy x Dz is {} x {} x {}".format(Dx, Dy, Dz))
|
359 |
+
|
360 |
+
# step4 计算每个点在volex grid内每一个维度的值
|
361 |
+
h = list() # h 为保存索引的列表
|
362 |
+
for i in range(len(point_cloud)):
|
363 |
+
hx = np.floor((point_cloud[i][0] - x_min) // size_r)
|
364 |
+
hy = np.floor((point_cloud[i][1] - y_min) // size_r)
|
365 |
+
hz = np.floor((point_cloud[i][2] - z_min) // size_r)
|
366 |
+
h.append(hx + hy * Dx + hz * Dx * Dy)
|
367 |
+
# print(h[60581])
|
368 |
+
|
369 |
+
# step5 对h值进行排序
|
370 |
+
h = np.array(h)
|
371 |
+
h_indice = np.argsort(h) # 提取索引,返回h里面的元素按从小到大排序的 索引
|
372 |
+
h_sorted = h[h_indice] # 升序
|
373 |
+
count = 0 # 用于维度的累计
|
374 |
+
step = 20
|
375 |
+
# 将h值相同的点放入到同一个grid中,并进行筛选
|
376 |
+
for i in range(1, len(h_sorted)): # 0-19999个数据点
|
377 |
+
# if i == len(h_sorted)-1:
|
378 |
+
# print("aaa")
|
379 |
+
if h_sorted[i] == h_sorted[i - 1] and (i != len(h_sorted) - 1):
|
380 |
+
continue
|
381 |
+
elif h_sorted[i] == h_sorted[i - 1] and (i == len(h_sorted) - 1):
|
382 |
+
point_idx = h_indice[count:]
|
383 |
+
key = h_sorted[i - 1]
|
384 |
+
same_points_list[key] = point_idx
|
385 |
+
_G = np.mean(point_cloud[point_idx], axis=0) # 所有点的重心
|
386 |
+
_d = np.linalg.norm(point_cloud[point_idx] - _G, axis=1, ord=2) # 计算到重心的距离
|
387 |
+
_d.sort()
|
388 |
+
inx = [j for j in range(0, len(_d), step)] # 获取指定间隔元素下标
|
389 |
+
for j in inx:
|
390 |
+
index = point_idx[j]
|
391 |
+
filtered_points.append(point_cloud[index])
|
392 |
+
count = i
|
393 |
+
elif h_sorted[i] != h_sorted[i - 1] and (i == len(h_sorted) - 1):
|
394 |
+
point_idx1 = h_indice[count:i]
|
395 |
+
key1 = h_sorted[i - 1]
|
396 |
+
same_points_list[key1] = point_idx1
|
397 |
+
_G = np.mean(point_cloud[point_idx1], axis=0) # 所有点的重心
|
398 |
+
_d = np.linalg.norm(point_cloud[point_idx1] - _G, axis=1, ord=2) # 计算到重心的距离
|
399 |
+
_d.sort()
|
400 |
+
inx = [j for j in range(0, len(_d), step)] # 获取��定间隔元素下标
|
401 |
+
for j in inx:
|
402 |
+
index = point_idx1[j]
|
403 |
+
filtered_points.append(point_cloud[index])
|
404 |
+
|
405 |
+
point_idx2 = h_indice[i:]
|
406 |
+
key2 = h_sorted[i]
|
407 |
+
same_points_list[key2] = point_idx2
|
408 |
+
_G = np.mean(point_cloud[point_idx2], axis=0) # 所有点的重心
|
409 |
+
_d = np.linalg.norm(point_cloud[point_idx2] - _G, axis=1, ord=2) # 计算到重心的距离
|
410 |
+
_d.sort()
|
411 |
+
inx = [j for j in range(0, len(_d), step)] # 获取指定间隔元素下标
|
412 |
+
for j in inx:
|
413 |
+
index = point_idx2[j]
|
414 |
+
filtered_points.append(point_cloud[index])
|
415 |
+
count = i
|
416 |
+
|
417 |
+
else:
|
418 |
+
point_idx = h_indice[count: i]
|
419 |
+
key = h_sorted[i - 1]
|
420 |
+
same_points_list[key] = point_idx
|
421 |
+
_G = np.mean(point_cloud[point_idx], axis=0) # 所有点的重心
|
422 |
+
_d = np.linalg.norm(point_cloud[point_idx] - _G, axis=1, ord=2) # 计算到重心的距离
|
423 |
+
_d.sort()
|
424 |
+
inx = [j for j in range(0, len(_d), step)] # 获取指定间隔元素下标
|
425 |
+
for j in inx:
|
426 |
+
index = point_idx[j]
|
427 |
+
filtered_points.append(point_cloud[index])
|
428 |
+
count = i
|
429 |
+
|
430 |
+
# 把点云格式改成array,并对外返回
|
431 |
+
# print(f'filtered_points[0]为{filtered_points[0]}')
|
432 |
+
filtered_points = np.array(filtered_points, dtype=np.float64)
|
433 |
+
return filtered_points,same_points_list
|
434 |
+
|
435 |
+
|
436 |
+
# 体素上采样
|
437 |
+
def voxel_upsample(same_points_list, point_cloud, filtered_points, filter_labels, leaf_size):
|
438 |
+
upsample_label = []
|
439 |
+
upsample_point = []
|
440 |
+
upsample_index = []
|
441 |
+
# step1 计算边界点
|
442 |
+
x_max, y_max, z_max = np.amax(point_cloud, axis=0) # 计算 x,y,z三个维度的最值
|
443 |
+
x_min, y_min, z_min = np.amin(point_cloud, axis=0)
|
444 |
+
# step2 确定体素的尺寸
|
445 |
+
size_r = leaf_size
|
446 |
+
# step3 计算每个 volex的维度 voxel grid
|
447 |
+
Dx = (x_max - x_min) // size_r + 1
|
448 |
+
Dy = (y_max - y_min) // size_r + 1
|
449 |
+
Dz = (z_max - z_min) // size_r + 1
|
450 |
+
print("Dx x Dy x Dz is {} x {} x {}".format(Dx, Dy, Dz))
|
451 |
+
|
452 |
+
# step4 计算每个点(采样后的点)在volex grid内每一个维度的值
|
453 |
+
h = list()
|
454 |
+
for i in range(len(filtered_points)):
|
455 |
+
hx = np.floor((filtered_points[i][0] - x_min) // size_r)
|
456 |
+
hy = np.floor((filtered_points[i][1] - y_min) // size_r)
|
457 |
+
hz = np.floor((filtered_points[i][2] - z_min) // size_r)
|
458 |
+
h.append(hx + hy * Dx + hz * Dx * Dy)
|
459 |
+
|
460 |
+
# step5 根据h值查询字典same_points_list
|
461 |
+
h = np.array(h)
|
462 |
+
count = 0
|
463 |
+
for i in range(1, len(h)):
|
464 |
+
if h[i] == h[i - 1] and i != (len(h) - 1):
|
465 |
+
continue
|
466 |
+
elif h[i] == h[i - 1] and i == (len(h) - 1):
|
467 |
+
label = filter_labels[count:]
|
468 |
+
key = h[i - 1]
|
469 |
+
count = i
|
470 |
+
# 累计label次数,classcount:{‘A’:2,'B':1}
|
471 |
+
classcount = {}
|
472 |
+
for i in range(len(label)):
|
473 |
+
vote = label[i]
|
474 |
+
classcount[vote] = classcount.get(vote, 0) + 1
|
475 |
+
# 对map的value排序
|
476 |
+
sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
|
477 |
+
# key = h[i-1]
|
478 |
+
point_index = same_points_list[key] # h对应的point index列表
|
479 |
+
for j in range(len(point_index)):
|
480 |
+
upsample_label.append(sortedclass[0][0])
|
481 |
+
index = point_index[j]
|
482 |
+
upsample_point.append(point_cloud[index])
|
483 |
+
upsample_index.append(index)
|
484 |
+
elif h[i] != h[i - 1] and (i == len(h) - 1):
|
485 |
+
label1 = filter_labels[count:i]
|
486 |
+
key1 = h[i - 1]
|
487 |
+
label2 = filter_labels[i:]
|
488 |
+
key2 = h[i]
|
489 |
+
count = i
|
490 |
+
|
491 |
+
classcount = {}
|
492 |
+
for i in range(len(label1)):
|
493 |
+
vote = label1[i]
|
494 |
+
classcount[vote] = classcount.get(vote, 0) + 1
|
495 |
+
sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
|
496 |
+
# key1 = h[i-1]
|
497 |
+
point_index = same_points_list[key1]
|
498 |
+
for j in range(len(point_index)):
|
499 |
+
upsample_label.append(sortedclass[0][0])
|
500 |
+
index = point_index[j]
|
501 |
+
upsample_point.append(point_cloud[index])
|
502 |
+
upsample_index.append(index)
|
503 |
+
|
504 |
+
# label2 = filter_labels[i:]
|
505 |
+
classcount = {}
|
506 |
+
for i in range(len(label2)):
|
507 |
+
vote = label2[i]
|
508 |
+
classcount[vote] = classcount.get(vote, 0) + 1
|
509 |
+
sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
|
510 |
+
# key2 = h[i]
|
511 |
+
point_index = same_points_list[key2]
|
512 |
+
for j in range(len(point_index)):
|
513 |
+
upsample_label.append(sortedclass[0][0])
|
514 |
+
index = point_index[j]
|
515 |
+
upsample_point.append(point_cloud[index])
|
516 |
+
upsample_index.append(index)
|
517 |
+
else:
|
518 |
+
label = filter_labels[count:i]
|
519 |
+
key = h[i - 1]
|
520 |
+
count = i
|
521 |
+
classcount = {}
|
522 |
+
for i in range(len(label)):
|
523 |
+
vote = label[i]
|
524 |
+
classcount[vote] = classcount.get(vote, 0) + 1
|
525 |
+
sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
|
526 |
+
# key = h[i-1]
|
527 |
+
point_index = same_points_list[key] # h对应的point index列表
|
528 |
+
for j in range(len(point_index)):
|
529 |
+
upsample_label.append(sortedclass[0][0])
|
530 |
+
index = point_index[j]
|
531 |
+
upsample_point.append(point_cloud[index])
|
532 |
+
upsample_index.append(index)
|
533 |
+
# count = i
|
534 |
+
|
535 |
+
# 恢复原始顺序
|
536 |
+
# print(f'upsample_index[0]的值为{upsample_index[0]}')
|
537 |
+
# print(f'upsample_index的总长度为{len(upsample_index)}')
|
538 |
+
|
539 |
+
# 恢复index原始顺序
|
540 |
+
upsample_index = np.array(upsample_index)
|
541 |
+
upsample_index_indice = np.argsort(upsample_index) # 提取索引,返回h里面的元素按从小到大排序的 索引
|
542 |
+
upsample_index_sorted = upsample_index[upsample_index_indice]
|
543 |
+
|
544 |
+
upsample_point = np.array(upsample_point)
|
545 |
+
upsample_label = np.array(upsample_label)
|
546 |
+
# 恢复point和label的原始顺序
|
547 |
+
upsample_point_sorted = upsample_point[upsample_index_indice]
|
548 |
+
upsample_label_sorted = upsample_label[upsample_index_indice]
|
549 |
+
|
550 |
+
return upsample_point_sorted, upsample_label_sorted
|
551 |
+
|
552 |
+
|
553 |
+
# 利用knn算法上采样
|
554 |
+
def KNN_sklearn_Load_data(voxel_points, center_points, labels):
|
555 |
+
# 载入数据
|
556 |
+
# x_train, x_test, y_train, y_test = train_test_split(center_points, labels, test_size=0.1)
|
557 |
+
# 构建模型
|
558 |
+
model = neighbors.KNeighborsClassifier(n_neighbors=3)
|
559 |
+
model.fit(center_points, labels)
|
560 |
+
prediction = model.predict(voxel_points.reshape(1, -1))
|
561 |
+
# meshtopoints_labels = classification_report(voxel_points, prediction)
|
562 |
+
return prediction[0]
|
563 |
+
|
564 |
+
|
565 |
+
# 加载点进行knn上采样
|
566 |
+
def Load_data(voxel_points, center_points, labels):
|
567 |
+
meshtopoints_labels = []
|
568 |
+
# meshtopoints_labels.append(SVC_sklearn_Load_data(voxel_points[i], center_points, labels))
|
569 |
+
for i in range(0, voxel_points.shape[0]):
|
570 |
+
meshtopoints_labels.append(KNN_sklearn_Load_data(voxel_points[i], center_points, labels))
|
571 |
+
return np.array(meshtopoints_labels)
|
572 |
+
|
573 |
+
# 将三角网格数据上采样回原始点云数据
|
574 |
+
def mesh_to_points_main(jaw, pcd_points, center_points, labels):
|
575 |
+
points = pcd_points.copy()
|
576 |
+
# 下采样
|
577 |
+
voxel_points, same_points_list = voxel_filter(points, 0.6)
|
578 |
+
|
579 |
+
after_labels = Load_data(voxel_points, center_points, labels)
|
580 |
+
|
581 |
+
upsample_point, upsample_label = voxel_upsample(same_points_list, points, voxel_points, after_labels, 0.6)
|
582 |
+
|
583 |
+
new_pcd = o3d.geometry.PointCloud()
|
584 |
+
new_pcd.points = o3d.utility.Vector3dVector(upsample_point)
|
585 |
+
instances_labels = upsample_label.copy()
|
586 |
+
# '''
|
587 |
+
# o3d.io.write_point_cloud(os.path.join(save_path, 'upsample_' + name + '.pcd'), new_pcd, write_ascii=True)
|
588 |
+
for i in range(0, upsample_label.shape[0]):
|
589 |
+
if jaw == 'upper':
|
590 |
+
if (upsample_label[i] >= 1) and (upsample_label[i] <= 8):
|
591 |
+
upsample_label[i] = upsample_label[i] + 10
|
592 |
+
elif (upsample_label[i] >= 9) and (upsample_label[i] <= 16):
|
593 |
+
upsample_label[i] = upsample_label[i] + 12
|
594 |
+
else:
|
595 |
+
if (upsample_label[i] >= 1) and (upsample_label[i] <= 8):
|
596 |
+
upsample_label[i] = upsample_label[i] + 30
|
597 |
+
elif (upsample_label[i] >= 9) and (upsample_label[i] <= 16):
|
598 |
+
upsample_label[i] = upsample_label[i] + 32
|
599 |
+
remove_outlier_main(jaw, pcd_points, upsample_label, instances_labels)
|
600 |
+
|
601 |
+
|
602 |
+
# 将原始点云数据转换为三角网格
|
603 |
+
def mesh_grid(pcd_points):
|
604 |
+
new_pcd,_ = voxel_filter(pcd_points, 0.6)
|
605 |
+
# pcd需要有法向量
|
606 |
+
|
607 |
+
# estimate radius for rolling ball
|
608 |
+
pcd_new = o3d.geometry.PointCloud()
|
609 |
+
pcd_new.points = o3d.utility.Vector3dVector(new_pcd)
|
610 |
+
pcd_new.estimate_normals()
|
611 |
+
distances = pcd_new.compute_nearest_neighbor_distance()
|
612 |
+
avg_dist = np.mean(distances)
|
613 |
+
radius = 6 * avg_dist
|
614 |
+
mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting(
|
615 |
+
pcd_new,
|
616 |
+
o3d.utility.DoubleVector([radius, radius * 2]))
|
617 |
+
# o3d.io.write_triangle_mesh("./tooth date/test.ply", mesh)
|
618 |
+
|
619 |
+
return mesh
|
620 |
+
|
621 |
+
|
622 |
+
# 读取obj文件内容
|
623 |
+
def read_obj(obj_path):
|
624 |
+
jaw = None
|
625 |
+
with open(obj_path) as file:
|
626 |
+
points = []
|
627 |
+
faces = []
|
628 |
+
while 1:
|
629 |
+
line = file.readline()
|
630 |
+
if not line:
|
631 |
+
break
|
632 |
+
strs = line.split(" ")
|
633 |
+
if strs[0] == "v":
|
634 |
+
points.append((float(strs[1]), float(strs[2]), float(strs[3])))
|
635 |
+
elif strs[0] == "f":
|
636 |
+
faces.append((int(strs[1]), int(strs[2]), int(strs[3])))
|
637 |
+
elif strs[1][0:5] == 'lower':
|
638 |
+
jaw = 'lower'
|
639 |
+
elif strs[1][0:5] == 'upper':
|
640 |
+
jaw = 'upper'
|
641 |
+
|
642 |
+
points = np.array(points)
|
643 |
+
faces = np.array(faces)
|
644 |
+
|
645 |
+
if jaw is None:
|
646 |
+
raise ValueError("Jaw type not found in OBJ file")
|
647 |
+
|
648 |
+
return points, faces, jaw
|
649 |
+
|
650 |
+
|
651 |
+
# obj文件转为pcd文件
|
652 |
+
def obj2pcd(obj_path):
|
653 |
+
if os.path.exists(obj_path):
|
654 |
+
print('yes')
|
655 |
+
points, _, jaw = read_obj(obj_path)
|
656 |
+
pcd_list = []
|
657 |
+
num_points = np.shape(points)[0]
|
658 |
+
for i in range(num_points):
|
659 |
+
new_line = str(points[i, 0]) + ' ' + str(points[i, 1]) + ' ' + str(points[i, 2])
|
660 |
+
pcd_list.append(new_line.split())
|
661 |
+
|
662 |
+
pcd_points = np.array(pcd_list).astype(np.float64)
|
663 |
+
return pcd_points, jaw
|
664 |
+
|
665 |
+
# Configure Streamlit page
|
666 |
+
st.set_page_config(page_title="Teeth Segmentation", page_icon="🦷")
|
667 |
+
|
668 |
+
class Segment(TeethApp):
|
669 |
+
def __init__(self):
|
670 |
+
TeethApp.__init__(self)
|
671 |
+
self.build_app()
|
672 |
+
|
673 |
+
def build_app(self):
|
674 |
+
|
675 |
+
st.title("Segment Intra-oral Scans")
|
676 |
+
st.markdown("Select scan for segmentation")
|
677 |
+
|
678 |
+
inputs = st.radio(
|
679 |
+
"Select scan for segmentation:",
|
680 |
+
("Upload Scan", "Example Scan"),
|
681 |
+
)
|
682 |
+
import pyvista as pv
|
683 |
+
if inputs == "Example Scan":
|
684 |
+
mesh = pv.read("ZOUIF2W4_upper.obj")
|
685 |
+
plotter = pv.Plotter()
|
686 |
+
|
687 |
+
# Add the mesh to the plotter
|
688 |
+
plotter.add_mesh(mesh, color='black', show_edges=True)
|
689 |
+
visualize = st.button("Segment")
|
690 |
+
if visualize:
|
691 |
+
stpyvista(plotter)
|
692 |
+
|
693 |
+
elif inputs == "Upload Scan":
|
694 |
+
file = st.file_uploader("Please upload an OBJ Object file", type=["OBJ"])
|
695 |
+
|
696 |
+
if file is not None:
|
697 |
+
# save the uploaded file to disk
|
698 |
+
with open("file.obj", "wb") as buffer:
|
699 |
+
shutil.copyfileobj(file, buffer)
|
700 |
+
# 复制数据
|
701 |
+
|
702 |
+
|
703 |
+
obj_path = "file.obj"
|
704 |
+
upsampling_method = 'KNN'
|
705 |
+
|
706 |
+
model_path = 'Mesh_Segementation_MeshSegNet_17_classes_60samples_best.tar'
|
707 |
+
num_classes = 17
|
708 |
+
num_channels = 15
|
709 |
+
|
710 |
+
# set model
|
711 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
712 |
+
model = MeshSegNet(num_classes=num_classes, num_channels=num_channels).to(device, dtype=torch.float)
|
713 |
+
|
714 |
+
# load trained model
|
715 |
+
# checkpoint = torch.load(os.path.join(model_path, model_name), map_location='cpu')
|
716 |
+
checkpoint = torch.load(model_path, map_location='cpu')
|
717 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
718 |
+
del checkpoint
|
719 |
+
model = model.to(device, dtype=torch.float)
|
720 |
+
|
721 |
+
# cudnn
|
722 |
+
torch.backends.cudnn.benchmark = True
|
723 |
+
torch.backends.cudnn.enabled = True
|
724 |
+
|
725 |
+
# Predicting
|
726 |
+
model.eval()
|
727 |
+
with torch.no_grad():
|
728 |
+
pcd_points, jaw = obj2pcd(obj_path)
|
729 |
+
mesh = mesh_grid(pcd_points)
|
730 |
+
|
731 |
+
# move mesh to origin
|
732 |
+
with st.spinner("Patience please, AI at work. Grab a coffee while you wait☕!"):
|
733 |
+
vertices_points = np.asarray(mesh.vertices)
|
734 |
+
triangles_points = np.asarray(mesh.triangles)
|
735 |
+
N = triangles_points.shape[0]
|
736 |
+
cells = np.zeros((triangles_points.shape[0], 9))
|
737 |
+
cells = vertices_points[triangles_points].reshape(triangles_points.shape[0], 9)
|
738 |
+
|
739 |
+
mean_cell_centers = mesh.get_center()
|
740 |
+
cells[:, 0:3] -= mean_cell_centers[0:3]
|
741 |
+
cells[:, 3:6] -= mean_cell_centers[0:3]
|
742 |
+
cells[:, 6:9] -= mean_cell_centers[0:3]
|
743 |
+
|
744 |
+
v1 = np.zeros([triangles_points.shape[0], 3], dtype='float32')
|
745 |
+
v2 = np.zeros([triangles_points.shape[0], 3], dtype='float32')
|
746 |
+
v1[:, 0] = cells[:, 0] - cells[:, 3]
|
747 |
+
v1[:, 1] = cells[:, 1] - cells[:, 4]
|
748 |
+
v1[:, 2] = cells[:, 2] - cells[:, 5]
|
749 |
+
v2[:, 0] = cells[:, 3] - cells[:, 6]
|
750 |
+
v2[:, 1] = cells[:, 4] - cells[:, 7]
|
751 |
+
v2[:, 2] = cells[:, 5] - cells[:, 8]
|
752 |
+
mesh_normals = np.cross(v1, v2)
|
753 |
+
mesh_normal_length = np.linalg.norm(mesh_normals, axis=1)
|
754 |
+
mesh_normals[:, 0] /= mesh_normal_length[:]
|
755 |
+
mesh_normals[:, 1] /= mesh_normal_length[:]
|
756 |
+
mesh_normals[:, 2] /= mesh_normal_length[:]
|
757 |
+
|
758 |
+
# prepare input
|
759 |
+
points = vertices_points.copy()
|
760 |
+
points[:, 0:3] -= mean_cell_centers[0:3]
|
761 |
+
normals = np.nan_to_num(mesh_normals).copy()
|
762 |
+
barycenters = np.zeros((triangles_points.shape[0], 3))
|
763 |
+
s = np.sum(vertices_points[triangles_points], 1)
|
764 |
+
barycenters = 1 / 3 * s
|
765 |
+
center_points = barycenters.copy()
|
766 |
+
barycenters -= mean_cell_centers[0:3]
|
767 |
+
|
768 |
+
# normalized data
|
769 |
+
maxs = points.max(axis=0)
|
770 |
+
mins = points.min(axis=0)
|
771 |
+
means = points.mean(axis=0)
|
772 |
+
stds = points.std(axis=0)
|
773 |
+
nmeans = normals.mean(axis=0)
|
774 |
+
nstds = normals.std(axis=0)
|
775 |
+
|
776 |
+
for i in range(3):
|
777 |
+
cells[:, i] = (cells[:, i] - means[i]) / stds[i] # point 1
|
778 |
+
cells[:, i + 3] = (cells[:, i + 3] - means[i]) / stds[i] # point 2
|
779 |
+
cells[:, i + 6] = (cells[:, i + 6] - means[i]) / stds[i] # point 3
|
780 |
+
barycenters[:, i] = (barycenters[:, i] - mins[i]) / (maxs[i] - mins[i])
|
781 |
+
normals[:, i] = (normals[:, i] - nmeans[i]) / nstds[i]
|
782 |
+
|
783 |
+
X = np.column_stack((cells, barycenters, normals))
|
784 |
+
|
785 |
+
# computing A_S and A_L
|
786 |
+
A_S = np.zeros([X.shape[0], X.shape[0]], dtype='float32')
|
787 |
+
A_L = np.zeros([X.shape[0], X.shape[0]], dtype='float32')
|
788 |
+
D = distance_matrix(X[:, 9:12], X[:, 9:12])
|
789 |
+
A_S[D < 0.1] = 1.0
|
790 |
+
A_S = A_S / np.dot(np.sum(A_S, axis=1, keepdims=True), np.ones((1, X.shape[0])))
|
791 |
+
|
792 |
+
A_L[D < 0.2] = 1.0
|
793 |
+
A_L = A_L / np.dot(np.sum(A_L, axis=1, keepdims=True), np.ones((1, X.shape[0])))
|
794 |
+
|
795 |
+
# numpy -> torch.tensor
|
796 |
+
X = X.transpose(1, 0)
|
797 |
+
X = X.reshape([1, X.shape[0], X.shape[1]])
|
798 |
+
X = torch.from_numpy(X).to(device, dtype=torch.float)
|
799 |
+
A_S = A_S.reshape([1, A_S.shape[0], A_S.shape[1]])
|
800 |
+
A_L = A_L.reshape([1, A_L.shape[0], A_L.shape[1]])
|
801 |
+
A_S = torch.from_numpy(A_S).to(device, dtype=torch.float)
|
802 |
+
A_L = torch.from_numpy(A_L).to(device, dtype=torch.float)
|
803 |
+
|
804 |
+
tensor_prob_output = model(X, A_S, A_L).to(device, dtype=torch.float)
|
805 |
+
patch_prob_output = tensor_prob_output.cpu().numpy()
|
806 |
+
|
807 |
+
# refinement
|
808 |
+
with st.spinner("Refining..."):
|
809 |
+
round_factor = 100
|
810 |
+
patch_prob_output[patch_prob_output < 1.0e-6] = 1.0e-6
|
811 |
+
|
812 |
+
# unaries
|
813 |
+
unaries = -round_factor * np.log10(patch_prob_output)
|
814 |
+
unaries = unaries.astype(np.int32)
|
815 |
+
unaries = unaries.reshape(-1, num_classes)
|
816 |
+
|
817 |
+
# parawisex
|
818 |
+
pairwise = (1 - np.eye(num_classes, dtype=np.int32))
|
819 |
+
|
820 |
+
cells = cells.copy()
|
821 |
+
|
822 |
+
cell_ids = np.asarray(triangles_points)
|
823 |
+
lambda_c = 20
|
824 |
+
edges = np.empty([1, 3], order='C')
|
825 |
+
for i_node in range(cells.shape[0]):
|
826 |
+
# Find neighbors
|
827 |
+
nei = np.sum(np.isin(cell_ids, cell_ids[i_node, :]), axis=1)
|
828 |
+
nei_id = np.where(nei == 2)
|
829 |
+
for i_nei in nei_id[0][:]:
|
830 |
+
if i_node < i_nei:
|
831 |
+
cos_theta = np.dot(normals[i_node, 0:3], normals[i_nei, 0:3]) / np.linalg.norm(
|
832 |
+
normals[i_node, 0:3]) / np.linalg.norm(normals[i_nei, 0:3])
|
833 |
+
if cos_theta >= 1.0:
|
834 |
+
cos_theta = 0.9999
|
835 |
+
theta = np.arccos(cos_theta)
|
836 |
+
phi = np.linalg.norm(barycenters[i_node, :] - barycenters[i_nei, :])
|
837 |
+
if theta > np.pi / 2.0:
|
838 |
+
edges = np.concatenate(
|
839 |
+
(edges, np.array([i_node, i_nei, -np.log10(theta / np.pi) * phi]).reshape(1, 3)), axis=0)
|
840 |
+
else:
|
841 |
+
beta = 1 + np.linalg.norm(np.dot(normals[i_node, 0:3], normals[i_nei, 0:3]))
|
842 |
+
edges = np.concatenate(
|
843 |
+
(edges, np.array([i_node, i_nei, -beta * np.log10(theta / np.pi) * phi]).reshape(1, 3)),
|
844 |
+
axis=0)
|
845 |
+
edges = np.delete(edges, 0, 0)
|
846 |
+
edges[:, 2] *= lambda_c * round_factor
|
847 |
+
edges = edges.astype(np.int32)
|
848 |
+
|
849 |
+
refine_labels = cut_from_graph(edges, unaries, pairwise)
|
850 |
+
refine_labels = refine_labels.reshape([-1, 1])
|
851 |
+
|
852 |
+
predicted_labels_3 = refine_labels.reshape(refine_labels.shape[0])
|
853 |
+
mesh_to_points_main(jaw, pcd_points, center_points, predicted_labels_3)
|
854 |
+
|
855 |
+
import pyvista as pv
|
856 |
+
|
857 |
+
with st.spinner("Rendering..."):
|
858 |
+
# Load the .obj file
|
859 |
+
mesh = pv.read('file.obj')
|
860 |
+
|
861 |
+
# Load the JSON file
|
862 |
+
with open('dental-labels4.json', 'r') as file:
|
863 |
+
labels_data = json.load(file)
|
864 |
+
|
865 |
+
# Assuming labels_data['labels'] is a list of labels
|
866 |
+
labels = labels_data['labels']
|
867 |
+
|
868 |
+
# Make sure the number of labels matches the number of vertices or faces
|
869 |
+
assert len(labels) == mesh.n_points or len(labels) == mesh.n_cells
|
870 |
+
|
871 |
+
# If labels correspond to vertices
|
872 |
+
if len(labels) == mesh.n_points:
|
873 |
+
mesh.point_data['Labels'] = labels
|
874 |
+
# If labels correspond to faces
|
875 |
+
elif len(labels) == mesh.n_cells:
|
876 |
+
mesh.cell_data['Labels'] = labels
|
877 |
+
|
878 |
+
# Create a pyvista plotter
|
879 |
+
plotter = pv.Plotter()
|
880 |
+
|
881 |
+
cmap = plt.cm.get_cmap('jet', 27) # Using a colormap with sufficient distinct colors
|
882 |
+
|
883 |
+
colors = cmap(np.linspace(0, 1, 27)) # Generate colors
|
884 |
+
|
885 |
+
# Convert colors to a format acceptable by PyVista
|
886 |
+
colormap = mcolors.ListedColormap(colors)
|
887 |
+
|
888 |
+
# Add the mesh to the plotter with labels as a scalar field
|
889 |
+
#plotter.add_mesh(mesh, scalars='Labels', show_scalar_bar=True, cmap='jet')
|
890 |
+
plotter.add_mesh(mesh, scalars='Labels', show_scalar_bar=True, cmap=colormap, clim=[0, 27])
|
891 |
+
|
892 |
+
# Show the plot
|
893 |
+
#plotter.show()
|
894 |
+
## Send to streamlit
|
895 |
+
stpyvista(plotter)
|
896 |
+
|
897 |
+
if __name__ == "__main__":
|
898 |
+
app = Segment()
|
apps/demo/pages/02_📙How_it_Works.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit import session_state as session
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
class TeethApp:
|
7 |
+
def __init__(self):
|
8 |
+
# Font
|
9 |
+
with open("utils/style.css") as css:
|
10 |
+
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
|
11 |
+
|
12 |
+
# Logo
|
13 |
+
self.image_path = "utils/teeth-295404_1280.png"
|
14 |
+
self.image = Image.open(self.image_path)
|
15 |
+
width, height = self.image.size
|
16 |
+
scale = 12
|
17 |
+
new_width, new_height = width / scale, height / scale
|
18 |
+
self.image = self.image.resize((int(new_width), int(new_height)))
|
19 |
+
|
20 |
+
# Streamlit side navigation bar
|
21 |
+
st.sidebar.markdown("# AI ToothSeg")
|
22 |
+
st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
|
23 |
+
st.sidebar.markdown(" ")
|
24 |
+
st.sidebar.image(self.image, use_column_width=False)
|
25 |
+
st.markdown(
|
26 |
+
"""
|
27 |
+
<style>
|
28 |
+
.css-1bxukto {
|
29 |
+
background-color: rgb(255, 255, 255) ;""",
|
30 |
+
unsafe_allow_html=True,
|
31 |
+
)
|
32 |
+
|
33 |
+
# Configure Streamlit page
|
34 |
+
st.set_page_config(page_title="Teeth Segmentation", page_icon="ⓘ")
|
35 |
+
|
36 |
+
|
37 |
+
class Guide(TeethApp):
|
38 |
+
def __init__(self):
|
39 |
+
TeethApp.__init__(self)
|
40 |
+
self.build_app()
|
41 |
+
|
42 |
+
def build_app(self):
|
43 |
+
st.title("AI-assited Tooth Segmentation")
|
44 |
+
st.markdown("This app automatically segments intra-oral scans of teeth using machine learning.")
|
45 |
+
st.markdown("Head to the 'Segment' tab to try it out!")
|
46 |
+
st.markdown("**Example:**")
|
47 |
+
st.image("illu.png")
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
app = Guide()
|
apps/demo/requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.28.2
|
2 |
+
pyvista==0.36.1
|
3 |
+
pythreejs==2.4.2
|
4 |
+
stpyvista==0.0.5
|
5 |
+
open3d==0.15.1
|
6 |
+
torch==1.11.0
|
7 |
+
scikit-learn==0.23.2
|
8 |
+
scipy==1.5.2
|
9 |
+
cython==0.29.21
|
10 |
+
matplotlib==3.3.2
|
11 |
+
pillow==10.1.0
|
apps/demo/utils/style.css
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@import url('https://fonts.googleapis.com/css2?family=Nunito:wght@400&display=swap');
|
2 |
+
|
3 |
+
html,
|
4 |
+
body,
|
5 |
+
[class*="css"] {
|
6 |
+
font-family: 'Nunito';
|
7 |
+
/* font-size: 16px; */
|
8 |
+
font-weight: 400;
|
9 |
+
color: #091747;
|
10 |
+
}
|
apps/demo/utils/teeth-295404_1280.png
ADDED
apps/demo/ⓘ_Introduction.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit import session_state as session
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
class TeethApp:
|
7 |
+
def __init__(self):
|
8 |
+
# Font
|
9 |
+
with open("utils/style.css") as css:
|
10 |
+
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
|
11 |
+
|
12 |
+
# Logo
|
13 |
+
self.image_path = "utils/teeth-295404_1280.png"
|
14 |
+
self.image = Image.open(self.image_path)
|
15 |
+
width, height = self.image.size
|
16 |
+
scale = 12
|
17 |
+
new_width, new_height = width / scale, height / scale
|
18 |
+
self.image = self.image.resize((int(new_width), int(new_height)))
|
19 |
+
|
20 |
+
# Streamlit side navigation bar
|
21 |
+
st.sidebar.markdown("# AI ToothSeg")
|
22 |
+
st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
|
23 |
+
st.sidebar.markdown(" ")
|
24 |
+
st.sidebar.image(self.image, use_column_width=False)
|
25 |
+
st.markdown(
|
26 |
+
"""
|
27 |
+
<style>
|
28 |
+
.css-1bxukto {
|
29 |
+
background-color: rgb(255, 255, 255) ;""",
|
30 |
+
unsafe_allow_html=True,
|
31 |
+
)
|
32 |
+
|
33 |
+
# Configure Streamlit page
|
34 |
+
st.set_page_config(page_title="Teeth Segmentation", page_icon="ⓘ")
|
35 |
+
|
36 |
+
st.title("AI-assited Tooth Segmentation")
|
37 |
+
st.markdown("This app automatically segments intra-oral scans of teeth using machine learning.")
|
38 |
+
st.markdown("Head to the 'Segment' tab to try it out!")
|
39 |
+
st.markdown("**Example:**")
|
40 |
+
st.image("illu.png")
|