huathedev commited on
Commit
ece455c
·
1 Parent(s): 8cf1f74

Upload 12 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ apps/demo/file.obj filter=lfs diff=lfs merge=lfs -text
37
+ apps/demo/illu.png filter=lfs diff=lfs merge=lfs -text
38
+ apps/demo/ZOUIF2W4_upper.obj filter=lfs diff=lfs merge=lfs -text
apps/.DS_Store ADDED
Binary file (6.15 kB). View file
 
apps/demo/.DS_Store ADDED
Binary file (6.15 kB). View file
 
apps/demo/Mesh_Segementation_MeshSegNet_17_classes_60samples_best.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d2e44db8865ff3968803e86dadcf73cf9c4b738ddc35bfb3bc42c02347d7a0c
3
+ size 28825987
apps/demo/ZOUIF2W4_upper.obj ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:581b9a026e2ce734f6335f34aa900e8114dc33e2a83541ebd6bb26536382545e
3
+ size 18769177
apps/demo/file.obj ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:581b9a026e2ce734f6335f34aa900e8114dc33e2a83541ebd6bb26536382545e
3
+ size 18769177
apps/demo/illu.png ADDED

Git LFS Details

  • SHA256: bd252730ed2050dc7ab0cce85546a3db5fc8d3162d5d7512970f93aa63fb2c74
  • Pointer size: 132 Bytes
  • Size of remote file: 1.27 MB
apps/demo/pages/01_🦷 Segment.py ADDED
@@ -0,0 +1,898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from streamlit import session_state as session
2
+ import shutil
3
+
4
+ import os
5
+ import numpy as np
6
+ from sklearn import neighbors
7
+ from scipy.spatial import distance_matrix
8
+ from pygco import cut_from_graph
9
+ import open3d as o3d
10
+ import matplotlib.pyplot as plt
11
+ import matplotlib.colors as mcolors
12
+ import json
13
+ from stpyvista import stpyvista
14
+ import torch
15
+ import torch.nn as nn
16
+ from torch.autograd import Variable
17
+ import torch.nn.functional as F
18
+ import streamlit as st
19
+ import pyvista as pv
20
+
21
+ from PIL import Image
22
+
23
+ class TeethApp:
24
+ def __init__(self):
25
+ # Font
26
+ with open("utils/style.css") as css:
27
+ st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
28
+
29
+ # Logo
30
+ self.image_path = "utils/teeth-295404_1280.png"
31
+ self.image = Image.open(self.image_path)
32
+ width, height = self.image.size
33
+ scale = 12
34
+ new_width, new_height = width / scale, height / scale
35
+ self.image = self.image.resize((int(new_width), int(new_height)))
36
+
37
+ # Streamlit side navigation bar
38
+ st.sidebar.markdown("# AI ToothSeg")
39
+ st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
40
+ st.sidebar.markdown(" ")
41
+ st.sidebar.image(self.image, use_column_width=False)
42
+ st.markdown(
43
+ """
44
+ <style>
45
+ .css-1bxukto {
46
+ background-color: rgb(255, 255, 255) ;""",
47
+ unsafe_allow_html=True,
48
+ )
49
+
50
+
51
+ class STN3d(nn.Module):
52
+ def __init__(self, channel):
53
+ super(STN3d, self).__init__()
54
+ self.conv1 = torch.nn.Conv1d(channel, 64, 1)
55
+ self.conv2 = torch.nn.Conv1d(64, 128, 1)
56
+ self.conv3 = torch.nn.Conv1d(128, 1024, 1)
57
+ self.fc1 = nn.Linear(1024, 512)
58
+ self.fc2 = nn.Linear(512, 256)
59
+ self.fc3 = nn.Linear(256, 9)
60
+ self.relu = nn.ReLU()
61
+
62
+ self.bn1 = nn.BatchNorm1d(64)
63
+ self.bn2 = nn.BatchNorm1d(128)
64
+ self.bn3 = nn.BatchNorm1d(1024)
65
+ self.bn4 = nn.BatchNorm1d(512)
66
+ self.bn5 = nn.BatchNorm1d(256)
67
+
68
+ def forward(self, x):
69
+ batchsize = x.size()[0]
70
+ x = F.relu(self.bn1(self.conv1(x)))
71
+ x = F.relu(self.bn2(self.conv2(x)))
72
+ x = F.relu(self.bn3(self.conv3(x)))
73
+ x = torch.max(x, 2, keepdim=True)[0]
74
+ x = x.view(-1, 1024)
75
+
76
+ x = F.relu(self.bn4(self.fc1(x)))
77
+ x = F.relu(self.bn5(self.fc2(x)))
78
+ x = self.fc3(x)
79
+
80
+ iden = Variable(torch.from_numpy(np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]).astype(np.float32))).view(1, 9).repeat(
81
+ batchsize, 1)
82
+ if x.is_cuda:
83
+ iden = iden.to(x.get_device())
84
+ x = x + iden
85
+ x = x.view(-1, 3, 3)
86
+ return x
87
+
88
+ class STNkd(nn.Module):
89
+ def __init__(self, k=64):
90
+ super(STNkd, self).__init__()
91
+ self.conv1 = torch.nn.Conv1d(k, 64, 1)
92
+ self.conv2 = torch.nn.Conv1d(64, 128, 1)
93
+ self.conv3 = torch.nn.Conv1d(128, 512, 1)
94
+ self.fc1 = nn.Linear(512, 256)
95
+ self.fc2 = nn.Linear(256, 128)
96
+ self.fc3 = nn.Linear(128, k * k)
97
+ self.relu = nn.ReLU()
98
+
99
+ self.bn1 = nn.BatchNorm1d(64)
100
+ self.bn2 = nn.BatchNorm1d(128)
101
+ self.bn3 = nn.BatchNorm1d(512)
102
+ self.bn4 = nn.BatchNorm1d(256)
103
+ self.bn5 = nn.BatchNorm1d(128)
104
+
105
+ self.k = k
106
+
107
+ def forward(self, x):
108
+ batchsize = x.size()[0]
109
+ x = F.relu(self.bn1(self.conv1(x)))
110
+ x = F.relu(self.bn2(self.conv2(x)))
111
+ x = F.relu(self.bn3(self.conv3(x)))
112
+ x = torch.max(x, 2, keepdim=True)[0]
113
+ x = x.view(-1, 512)
114
+
115
+ x = F.relu(self.bn4(self.fc1(x)))
116
+ x = F.relu(self.bn5(self.fc2(x)))
117
+ x = self.fc3(x)
118
+
119
+ iden = Variable(torch.from_numpy(np.eye(self.k).flatten().astype(np.float32))).view(1, self.k * self.k).repeat(
120
+ batchsize, 1)
121
+ if x.is_cuda:
122
+ iden = iden.to(x.get_device())
123
+ x = x + iden
124
+ x = x.view(-1, self.k, self.k)
125
+ return x
126
+
127
+ class MeshSegNet(nn.Module):
128
+ def __init__(self, num_classes=17, num_channels=15, with_dropout=True, dropout_p=0.5):
129
+ super(MeshSegNet, self).__init__()
130
+ self.num_classes = num_classes
131
+ self.num_channels = num_channels
132
+ self.with_dropout = with_dropout
133
+ self.dropout_p = dropout_p
134
+
135
+ # MLP-1 [64, 64]
136
+ self.mlp1_conv1 = torch.nn.Conv1d(self.num_channels, 64, 1)
137
+ self.mlp1_conv2 = torch.nn.Conv1d(64, 64, 1)
138
+ self.mlp1_bn1 = nn.BatchNorm1d(64)
139
+ self.mlp1_bn2 = nn.BatchNorm1d(64)
140
+ # FTM (feature-transformer module)
141
+ self.fstn = STNkd(k=64)
142
+ # GLM-1 (graph-contrained learning modulus)
143
+ self.glm1_conv1_1 = torch.nn.Conv1d(64, 32, 1)
144
+ self.glm1_conv1_2 = torch.nn.Conv1d(64, 32, 1)
145
+ self.glm1_bn1_1 = nn.BatchNorm1d(32)
146
+ self.glm1_bn1_2 = nn.BatchNorm1d(32)
147
+ self.glm1_conv2 = torch.nn.Conv1d(32+32, 64, 1)
148
+ self.glm1_bn2 = nn.BatchNorm1d(64)
149
+ # MLP-2
150
+ self.mlp2_conv1 = torch.nn.Conv1d(64, 64, 1)
151
+ self.mlp2_bn1 = nn.BatchNorm1d(64)
152
+ self.mlp2_conv2 = torch.nn.Conv1d(64, 128, 1)
153
+ self.mlp2_bn2 = nn.BatchNorm1d(128)
154
+ self.mlp2_conv3 = torch.nn.Conv1d(128, 512, 1)
155
+ self.mlp2_bn3 = nn.BatchNorm1d(512)
156
+ # GLM-2 (graph-contrained learning modulus)
157
+ self.glm2_conv1_1 = torch.nn.Conv1d(512, 128, 1)
158
+ self.glm2_conv1_2 = torch.nn.Conv1d(512, 128, 1)
159
+ self.glm2_conv1_3 = torch.nn.Conv1d(512, 128, 1)
160
+ self.glm2_bn1_1 = nn.BatchNorm1d(128)
161
+ self.glm2_bn1_2 = nn.BatchNorm1d(128)
162
+ self.glm2_bn1_3 = nn.BatchNorm1d(128)
163
+ self.glm2_conv2 = torch.nn.Conv1d(128*3, 512, 1)
164
+ self.glm2_bn2 = nn.BatchNorm1d(512)
165
+ # MLP-3
166
+ self.mlp3_conv1 = torch.nn.Conv1d(64+512+512+512, 256, 1)
167
+ self.mlp3_conv2 = torch.nn.Conv1d(256, 256, 1)
168
+ self.mlp3_bn1_1 = nn.BatchNorm1d(256)
169
+ self.mlp3_bn1_2 = nn.BatchNorm1d(256)
170
+ self.mlp3_conv3 = torch.nn.Conv1d(256, 128, 1)
171
+ self.mlp3_conv4 = torch.nn.Conv1d(128, 128, 1)
172
+ self.mlp3_bn2_1 = nn.BatchNorm1d(128)
173
+ self.mlp3_bn2_2 = nn.BatchNorm1d(128)
174
+ # output
175
+ self.output_conv = torch.nn.Conv1d(128, self.num_classes, 1)
176
+ if self.with_dropout:
177
+ self.dropout = nn.Dropout(p=self.dropout_p)
178
+
179
+ def forward(self, x, a_s, a_l):
180
+ batchsize = x.size()[0]
181
+ n_pts = x.size()[2]
182
+ # MLP-1
183
+ x = F.relu(self.mlp1_bn1(self.mlp1_conv1(x)))
184
+ x = F.relu(self.mlp1_bn2(self.mlp1_conv2(x)))
185
+ # FTM
186
+ trans_feat = self.fstn(x)
187
+ x = x.transpose(2, 1)
188
+ x_ftm = torch.bmm(x, trans_feat)
189
+ # GLM-1
190
+ sap = torch.bmm(a_s, x_ftm)
191
+ sap = sap.transpose(2, 1)
192
+ x_ftm = x_ftm.transpose(2, 1)
193
+ x = F.relu(self.glm1_bn1_1(self.glm1_conv1_1(x_ftm)))
194
+ glm_1_sap = F.relu(self.glm1_bn1_2(self.glm1_conv1_2(sap)))
195
+ x = torch.cat([x, glm_1_sap], dim=1)
196
+ x = F.relu(self.glm1_bn2(self.glm1_conv2(x)))
197
+ # MLP-2
198
+ x = F.relu(self.mlp2_bn1(self.mlp2_conv1(x)))
199
+ x = F.relu(self.mlp2_bn2(self.mlp2_conv2(x)))
200
+ x_mlp2 = F.relu(self.mlp2_bn3(self.mlp2_conv3(x)))
201
+ if self.with_dropout:
202
+ x_mlp2 = self.dropout(x_mlp2)
203
+ # GLM-2
204
+ x_mlp2 = x_mlp2.transpose(2, 1)
205
+ sap_1 = torch.bmm(a_s, x_mlp2)
206
+ sap_2 = torch.bmm(a_l, x_mlp2)
207
+ x_mlp2 = x_mlp2.transpose(2, 1)
208
+ sap_1 = sap_1.transpose(2, 1)
209
+ sap_2 = sap_2.transpose(2, 1)
210
+ x = F.relu(self.glm2_bn1_1(self.glm2_conv1_1(x_mlp2)))
211
+ glm_2_sap_1 = F.relu(self.glm2_bn1_2(self.glm2_conv1_2(sap_1)))
212
+ glm_2_sap_2 = F.relu(self.glm2_bn1_3(self.glm2_conv1_3(sap_2)))
213
+ x = torch.cat([x, glm_2_sap_1, glm_2_sap_2], dim=1)
214
+ x_glm2 = F.relu(self.glm2_bn2(self.glm2_conv2(x)))
215
+ # GMP
216
+ x = torch.max(x_glm2, 2, keepdim=True)[0]
217
+ # Upsample
218
+ x = torch.nn.Upsample(n_pts)(x)
219
+ # Dense fusion
220
+ x = torch.cat([x, x_ftm, x_mlp2, x_glm2], dim=1)
221
+ # MLP-3
222
+ x = F.relu(self.mlp3_bn1_1(self.mlp3_conv1(x)))
223
+ x = F.relu(self.mlp3_bn1_2(self.mlp3_conv2(x)))
224
+ x = F.relu(self.mlp3_bn2_1(self.mlp3_conv3(x)))
225
+ if self.with_dropout:
226
+ x = self.dropout(x)
227
+ x = F.relu(self.mlp3_bn2_2(self.mlp3_conv4(x)))
228
+ # output
229
+ x = self.output_conv(x)
230
+ x = x.transpose(2,1).contiguous()
231
+ x = torch.nn.Softmax(dim=-1)(x.view(-1, self.num_classes))
232
+ x = x.view(batchsize, n_pts, self.num_classes)
233
+
234
+ return x
235
+
236
+ def clone_runoob(li1):
237
+ li_copy = li1[:]
238
+ return li_copy
239
+
240
+ # 对离群点重新进行分类
241
+ def class_inlier_outlier(label_list, mean_points,cloud, ind, label_index, points, labels):
242
+ label_change = clone_runoob(labels)
243
+ outlier_index = clone_runoob(label_index)
244
+ ind_reverse = clone_runoob(ind)
245
+ # 得到离群点的label下标
246
+ ind_reverse.reverse()
247
+ for i in ind_reverse:
248
+ outlier_index.pop(i)
249
+
250
+ # 获取离群点
251
+ inlier_cloud = cloud.select_by_index(ind)
252
+ outlier_cloud = cloud.select_by_index(ind, invert=True)
253
+ outlier_points = np.array(outlier_cloud.points)
254
+
255
+ for i in range(len(outlier_points)):
256
+ distance = []
257
+ for j in range(len(mean_points)):
258
+ dis = np.linalg.norm(outlier_points[i] - mean_points[j], ord=2) # 计算tooth和GT质心之间的距离
259
+ distance.append(dis)
260
+ min_index = distance.index(min(distance)) # 获取和离群点质心最近label的index
261
+ outlier_label = label_list[min_index] # 获取离群点应该的label
262
+ index = outlier_index[i]
263
+ label_change[index] = outlier_label
264
+
265
+ return label_change
266
+
267
+ # 利用knn算法消除离群点
268
+ def remove_outlier(points, labels):
269
+ # points = np.array(point_cloud_o3d_orign.points)
270
+ # global label_list
271
+ same_label_points = {}
272
+
273
+ same_label_index = {}
274
+
275
+ mean_points = [] # 所有label种类对应点云的质心坐标
276
+
277
+ label_list = []
278
+ for i in range(len(labels)):
279
+ label_list.append(labels[i])
280
+ label_list = list(set(label_list)) # 去重获从小到大排序取GT_label=[0, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27]
281
+ label_list.sort()
282
+ label_list = label_list[1:]
283
+
284
+ for i in label_list:
285
+ key = i
286
+ points_list = []
287
+ all_label_index = []
288
+ for j in range(len(labels)):
289
+ if labels[j] == i:
290
+ points_list.append(points[j].tolist())
291
+ all_label_index.append(j) # 得到label为 i 的点对应的label的下标
292
+ same_label_points[key] = points_list
293
+ same_label_index[key] = all_label_index
294
+
295
+ tooth_mean = np.mean(points_list, axis=0)
296
+ mean_points.append(tooth_mean)
297
+ # print(mean_points)
298
+
299
+ for i in label_list:
300
+ points_array = same_label_points[i]
301
+ # 建立一个o3d的点云对象
302
+ pcd = o3d.geometry.PointCloud()
303
+ # 使用Vector3dVector方法转换
304
+ pcd.points = o3d.utility.Vector3dVector(points_array)
305
+
306
+ # 对label i 对应的点云进行统计离群值去除,找出离群点并显示
307
+ # 统计式离群点移除
308
+ cl, ind = pcd.remove_statistical_outlier(nb_neighbors=200, std_ratio=2.0) # cl是选中的点,ind是选中点index
309
+ # 可视化
310
+ # display_inlier_outlier(pcd, ind)
311
+
312
+ # 对分出来的离群点重新分类
313
+ label_index = same_label_index[i]
314
+ labels = class_inlier_outlier(label_list, mean_points, pcd, ind, label_index, points, labels)
315
+ # print(f"label_change{labels[4400]}")
316
+
317
+ return labels
318
+
319
+
320
+ # 消除离群点,保存最后的输出
321
+ def remove_outlier_main(jaw, pcd_points, labels, instances_labels):
322
+ # point_cloud_o3d_orign = o3d.io.read_point_cloud('E:/tooth/data/MeshSegNet-master/test_upsample_15/upsample_01K17AN8_upper_refined.pcd')
323
+ # 原始点
324
+ points = pcd_points.copy()
325
+ label = remove_outlier(points, labels)
326
+
327
+ # 保存json文件
328
+ label_dict = {}
329
+ label_dict["id_patient"] = ""
330
+ label_dict["jaw"] = jaw
331
+ label_dict["labels"] = label.tolist()
332
+ label_dict["instances"] = instances_labels.tolist()
333
+ b = json.dumps(label_dict)
334
+ with open('dental-labels4' + '.json', 'w') as f_obj:
335
+ f_obj.write(b)
336
+ f_obj.close()
337
+
338
+
339
+ same_points_list = {}
340
+
341
+
342
+ # 体素下采样
343
+ def voxel_filter(point_cloud, leaf_size):
344
+ same_points_list = {}
345
+ filtered_points = []
346
+ # step1 计算边界点
347
+ x_max, y_max, z_max = np.amax(point_cloud, axis=0) # 计算 x,y,z三个维度的最值
348
+ x_min, y_min, z_min = np.amin(point_cloud, axis=0)
349
+
350
+ # step2 确定体素的尺寸
351
+ size_r = leaf_size
352
+
353
+ # step3 计算每个 volex的维度 voxel grid
354
+ Dx = (x_max - x_min) // size_r + 1
355
+ Dy = (y_max - y_min) // size_r + 1
356
+ Dz = (z_max - z_min) // size_r + 1
357
+
358
+ # print("Dx x Dy x Dz is {} x {} x {}".format(Dx, Dy, Dz))
359
+
360
+ # step4 计算每个点在volex grid内每一个维度的值
361
+ h = list() # h 为保存索引的列表
362
+ for i in range(len(point_cloud)):
363
+ hx = np.floor((point_cloud[i][0] - x_min) // size_r)
364
+ hy = np.floor((point_cloud[i][1] - y_min) // size_r)
365
+ hz = np.floor((point_cloud[i][2] - z_min) // size_r)
366
+ h.append(hx + hy * Dx + hz * Dx * Dy)
367
+ # print(h[60581])
368
+
369
+ # step5 对h值进行排序
370
+ h = np.array(h)
371
+ h_indice = np.argsort(h) # 提取索引,返回h里面的元素按从小到大排序的 索引
372
+ h_sorted = h[h_indice] # 升序
373
+ count = 0 # 用于维度的累计
374
+ step = 20
375
+ # 将h值相同的点放入到同一个grid中,并进行筛选
376
+ for i in range(1, len(h_sorted)): # 0-19999个数据点
377
+ # if i == len(h_sorted)-1:
378
+ # print("aaa")
379
+ if h_sorted[i] == h_sorted[i - 1] and (i != len(h_sorted) - 1):
380
+ continue
381
+ elif h_sorted[i] == h_sorted[i - 1] and (i == len(h_sorted) - 1):
382
+ point_idx = h_indice[count:]
383
+ key = h_sorted[i - 1]
384
+ same_points_list[key] = point_idx
385
+ _G = np.mean(point_cloud[point_idx], axis=0) # 所有点的重心
386
+ _d = np.linalg.norm(point_cloud[point_idx] - _G, axis=1, ord=2) # 计算到重心的距离
387
+ _d.sort()
388
+ inx = [j for j in range(0, len(_d), step)] # 获取指定间隔元素下标
389
+ for j in inx:
390
+ index = point_idx[j]
391
+ filtered_points.append(point_cloud[index])
392
+ count = i
393
+ elif h_sorted[i] != h_sorted[i - 1] and (i == len(h_sorted) - 1):
394
+ point_idx1 = h_indice[count:i]
395
+ key1 = h_sorted[i - 1]
396
+ same_points_list[key1] = point_idx1
397
+ _G = np.mean(point_cloud[point_idx1], axis=0) # 所有点的重心
398
+ _d = np.linalg.norm(point_cloud[point_idx1] - _G, axis=1, ord=2) # 计算到重心的距离
399
+ _d.sort()
400
+ inx = [j for j in range(0, len(_d), step)] # 获取��定间隔元素下标
401
+ for j in inx:
402
+ index = point_idx1[j]
403
+ filtered_points.append(point_cloud[index])
404
+
405
+ point_idx2 = h_indice[i:]
406
+ key2 = h_sorted[i]
407
+ same_points_list[key2] = point_idx2
408
+ _G = np.mean(point_cloud[point_idx2], axis=0) # 所有点的重心
409
+ _d = np.linalg.norm(point_cloud[point_idx2] - _G, axis=1, ord=2) # 计算到重心的距离
410
+ _d.sort()
411
+ inx = [j for j in range(0, len(_d), step)] # 获取指定间隔元素下标
412
+ for j in inx:
413
+ index = point_idx2[j]
414
+ filtered_points.append(point_cloud[index])
415
+ count = i
416
+
417
+ else:
418
+ point_idx = h_indice[count: i]
419
+ key = h_sorted[i - 1]
420
+ same_points_list[key] = point_idx
421
+ _G = np.mean(point_cloud[point_idx], axis=0) # 所有点的重心
422
+ _d = np.linalg.norm(point_cloud[point_idx] - _G, axis=1, ord=2) # 计算到重心的距离
423
+ _d.sort()
424
+ inx = [j for j in range(0, len(_d), step)] # 获取指定间隔元素下标
425
+ for j in inx:
426
+ index = point_idx[j]
427
+ filtered_points.append(point_cloud[index])
428
+ count = i
429
+
430
+ # 把点云格式改成array,并对外返回
431
+ # print(f'filtered_points[0]为{filtered_points[0]}')
432
+ filtered_points = np.array(filtered_points, dtype=np.float64)
433
+ return filtered_points,same_points_list
434
+
435
+
436
+ # 体素上采样
437
+ def voxel_upsample(same_points_list, point_cloud, filtered_points, filter_labels, leaf_size):
438
+ upsample_label = []
439
+ upsample_point = []
440
+ upsample_index = []
441
+ # step1 计算边界点
442
+ x_max, y_max, z_max = np.amax(point_cloud, axis=0) # 计算 x,y,z三个维度的最值
443
+ x_min, y_min, z_min = np.amin(point_cloud, axis=0)
444
+ # step2 确定体素的尺寸
445
+ size_r = leaf_size
446
+ # step3 计算每个 volex的维度 voxel grid
447
+ Dx = (x_max - x_min) // size_r + 1
448
+ Dy = (y_max - y_min) // size_r + 1
449
+ Dz = (z_max - z_min) // size_r + 1
450
+ print("Dx x Dy x Dz is {} x {} x {}".format(Dx, Dy, Dz))
451
+
452
+ # step4 计算每个点(采样后的点)在volex grid内每一个维度的值
453
+ h = list()
454
+ for i in range(len(filtered_points)):
455
+ hx = np.floor((filtered_points[i][0] - x_min) // size_r)
456
+ hy = np.floor((filtered_points[i][1] - y_min) // size_r)
457
+ hz = np.floor((filtered_points[i][2] - z_min) // size_r)
458
+ h.append(hx + hy * Dx + hz * Dx * Dy)
459
+
460
+ # step5 根据h值查询字典same_points_list
461
+ h = np.array(h)
462
+ count = 0
463
+ for i in range(1, len(h)):
464
+ if h[i] == h[i - 1] and i != (len(h) - 1):
465
+ continue
466
+ elif h[i] == h[i - 1] and i == (len(h) - 1):
467
+ label = filter_labels[count:]
468
+ key = h[i - 1]
469
+ count = i
470
+ # 累计label次数,classcount:{‘A’:2,'B':1}
471
+ classcount = {}
472
+ for i in range(len(label)):
473
+ vote = label[i]
474
+ classcount[vote] = classcount.get(vote, 0) + 1
475
+ # 对map的value排序
476
+ sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
477
+ # key = h[i-1]
478
+ point_index = same_points_list[key] # h对应的point index列表
479
+ for j in range(len(point_index)):
480
+ upsample_label.append(sortedclass[0][0])
481
+ index = point_index[j]
482
+ upsample_point.append(point_cloud[index])
483
+ upsample_index.append(index)
484
+ elif h[i] != h[i - 1] and (i == len(h) - 1):
485
+ label1 = filter_labels[count:i]
486
+ key1 = h[i - 1]
487
+ label2 = filter_labels[i:]
488
+ key2 = h[i]
489
+ count = i
490
+
491
+ classcount = {}
492
+ for i in range(len(label1)):
493
+ vote = label1[i]
494
+ classcount[vote] = classcount.get(vote, 0) + 1
495
+ sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
496
+ # key1 = h[i-1]
497
+ point_index = same_points_list[key1]
498
+ for j in range(len(point_index)):
499
+ upsample_label.append(sortedclass[0][0])
500
+ index = point_index[j]
501
+ upsample_point.append(point_cloud[index])
502
+ upsample_index.append(index)
503
+
504
+ # label2 = filter_labels[i:]
505
+ classcount = {}
506
+ for i in range(len(label2)):
507
+ vote = label2[i]
508
+ classcount[vote] = classcount.get(vote, 0) + 1
509
+ sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
510
+ # key2 = h[i]
511
+ point_index = same_points_list[key2]
512
+ for j in range(len(point_index)):
513
+ upsample_label.append(sortedclass[0][0])
514
+ index = point_index[j]
515
+ upsample_point.append(point_cloud[index])
516
+ upsample_index.append(index)
517
+ else:
518
+ label = filter_labels[count:i]
519
+ key = h[i - 1]
520
+ count = i
521
+ classcount = {}
522
+ for i in range(len(label)):
523
+ vote = label[i]
524
+ classcount[vote] = classcount.get(vote, 0) + 1
525
+ sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
526
+ # key = h[i-1]
527
+ point_index = same_points_list[key] # h对应的point index列表
528
+ for j in range(len(point_index)):
529
+ upsample_label.append(sortedclass[0][0])
530
+ index = point_index[j]
531
+ upsample_point.append(point_cloud[index])
532
+ upsample_index.append(index)
533
+ # count = i
534
+
535
+ # 恢复原始顺序
536
+ # print(f'upsample_index[0]的值为{upsample_index[0]}')
537
+ # print(f'upsample_index的总长度为{len(upsample_index)}')
538
+
539
+ # 恢复index原始顺序
540
+ upsample_index = np.array(upsample_index)
541
+ upsample_index_indice = np.argsort(upsample_index) # 提取索引,返回h里面的元素按从小到大排序的 索引
542
+ upsample_index_sorted = upsample_index[upsample_index_indice]
543
+
544
+ upsample_point = np.array(upsample_point)
545
+ upsample_label = np.array(upsample_label)
546
+ # 恢复point和label的原始顺序
547
+ upsample_point_sorted = upsample_point[upsample_index_indice]
548
+ upsample_label_sorted = upsample_label[upsample_index_indice]
549
+
550
+ return upsample_point_sorted, upsample_label_sorted
551
+
552
+
553
+ # 利用knn算法上采样
554
+ def KNN_sklearn_Load_data(voxel_points, center_points, labels):
555
+ # 载入数据
556
+ # x_train, x_test, y_train, y_test = train_test_split(center_points, labels, test_size=0.1)
557
+ # 构建模型
558
+ model = neighbors.KNeighborsClassifier(n_neighbors=3)
559
+ model.fit(center_points, labels)
560
+ prediction = model.predict(voxel_points.reshape(1, -1))
561
+ # meshtopoints_labels = classification_report(voxel_points, prediction)
562
+ return prediction[0]
563
+
564
+
565
+ # 加载点进行knn上采样
566
+ def Load_data(voxel_points, center_points, labels):
567
+ meshtopoints_labels = []
568
+ # meshtopoints_labels.append(SVC_sklearn_Load_data(voxel_points[i], center_points, labels))
569
+ for i in range(0, voxel_points.shape[0]):
570
+ meshtopoints_labels.append(KNN_sklearn_Load_data(voxel_points[i], center_points, labels))
571
+ return np.array(meshtopoints_labels)
572
+
573
+ # 将三角网格数据上采样回原始点云数据
574
+ def mesh_to_points_main(jaw, pcd_points, center_points, labels):
575
+ points = pcd_points.copy()
576
+ # 下采样
577
+ voxel_points, same_points_list = voxel_filter(points, 0.6)
578
+
579
+ after_labels = Load_data(voxel_points, center_points, labels)
580
+
581
+ upsample_point, upsample_label = voxel_upsample(same_points_list, points, voxel_points, after_labels, 0.6)
582
+
583
+ new_pcd = o3d.geometry.PointCloud()
584
+ new_pcd.points = o3d.utility.Vector3dVector(upsample_point)
585
+ instances_labels = upsample_label.copy()
586
+ # '''
587
+ # o3d.io.write_point_cloud(os.path.join(save_path, 'upsample_' + name + '.pcd'), new_pcd, write_ascii=True)
588
+ for i in range(0, upsample_label.shape[0]):
589
+ if jaw == 'upper':
590
+ if (upsample_label[i] >= 1) and (upsample_label[i] <= 8):
591
+ upsample_label[i] = upsample_label[i] + 10
592
+ elif (upsample_label[i] >= 9) and (upsample_label[i] <= 16):
593
+ upsample_label[i] = upsample_label[i] + 12
594
+ else:
595
+ if (upsample_label[i] >= 1) and (upsample_label[i] <= 8):
596
+ upsample_label[i] = upsample_label[i] + 30
597
+ elif (upsample_label[i] >= 9) and (upsample_label[i] <= 16):
598
+ upsample_label[i] = upsample_label[i] + 32
599
+ remove_outlier_main(jaw, pcd_points, upsample_label, instances_labels)
600
+
601
+
602
+ # 将原始点云数据转换为三角网格
603
+ def mesh_grid(pcd_points):
604
+ new_pcd,_ = voxel_filter(pcd_points, 0.6)
605
+ # pcd需要有法向量
606
+
607
+ # estimate radius for rolling ball
608
+ pcd_new = o3d.geometry.PointCloud()
609
+ pcd_new.points = o3d.utility.Vector3dVector(new_pcd)
610
+ pcd_new.estimate_normals()
611
+ distances = pcd_new.compute_nearest_neighbor_distance()
612
+ avg_dist = np.mean(distances)
613
+ radius = 6 * avg_dist
614
+ mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting(
615
+ pcd_new,
616
+ o3d.utility.DoubleVector([radius, radius * 2]))
617
+ # o3d.io.write_triangle_mesh("./tooth date/test.ply", mesh)
618
+
619
+ return mesh
620
+
621
+
622
+ # 读取obj文件内容
623
+ def read_obj(obj_path):
624
+ jaw = None
625
+ with open(obj_path) as file:
626
+ points = []
627
+ faces = []
628
+ while 1:
629
+ line = file.readline()
630
+ if not line:
631
+ break
632
+ strs = line.split(" ")
633
+ if strs[0] == "v":
634
+ points.append((float(strs[1]), float(strs[2]), float(strs[3])))
635
+ elif strs[0] == "f":
636
+ faces.append((int(strs[1]), int(strs[2]), int(strs[3])))
637
+ elif strs[1][0:5] == 'lower':
638
+ jaw = 'lower'
639
+ elif strs[1][0:5] == 'upper':
640
+ jaw = 'upper'
641
+
642
+ points = np.array(points)
643
+ faces = np.array(faces)
644
+
645
+ if jaw is None:
646
+ raise ValueError("Jaw type not found in OBJ file")
647
+
648
+ return points, faces, jaw
649
+
650
+
651
+ # obj文件转为pcd文件
652
+ def obj2pcd(obj_path):
653
+ if os.path.exists(obj_path):
654
+ print('yes')
655
+ points, _, jaw = read_obj(obj_path)
656
+ pcd_list = []
657
+ num_points = np.shape(points)[0]
658
+ for i in range(num_points):
659
+ new_line = str(points[i, 0]) + ' ' + str(points[i, 1]) + ' ' + str(points[i, 2])
660
+ pcd_list.append(new_line.split())
661
+
662
+ pcd_points = np.array(pcd_list).astype(np.float64)
663
+ return pcd_points, jaw
664
+
665
+ # Configure Streamlit page
666
+ st.set_page_config(page_title="Teeth Segmentation", page_icon="🦷")
667
+
668
+ class Segment(TeethApp):
669
+ def __init__(self):
670
+ TeethApp.__init__(self)
671
+ self.build_app()
672
+
673
+ def build_app(self):
674
+
675
+ st.title("Segment Intra-oral Scans")
676
+ st.markdown("Select scan for segmentation")
677
+
678
+ inputs = st.radio(
679
+ "Select scan for segmentation:",
680
+ ("Upload Scan", "Example Scan"),
681
+ )
682
+ import pyvista as pv
683
+ if inputs == "Example Scan":
684
+ mesh = pv.read("ZOUIF2W4_upper.obj")
685
+ plotter = pv.Plotter()
686
+
687
+ # Add the mesh to the plotter
688
+ plotter.add_mesh(mesh, color='black', show_edges=True)
689
+ visualize = st.button("Segment")
690
+ if visualize:
691
+ stpyvista(plotter)
692
+
693
+ elif inputs == "Upload Scan":
694
+ file = st.file_uploader("Please upload an OBJ Object file", type=["OBJ"])
695
+
696
+ if file is not None:
697
+ # save the uploaded file to disk
698
+ with open("file.obj", "wb") as buffer:
699
+ shutil.copyfileobj(file, buffer)
700
+ # 复制数据
701
+
702
+
703
+ obj_path = "file.obj"
704
+ upsampling_method = 'KNN'
705
+
706
+ model_path = 'Mesh_Segementation_MeshSegNet_17_classes_60samples_best.tar'
707
+ num_classes = 17
708
+ num_channels = 15
709
+
710
+ # set model
711
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
712
+ model = MeshSegNet(num_classes=num_classes, num_channels=num_channels).to(device, dtype=torch.float)
713
+
714
+ # load trained model
715
+ # checkpoint = torch.load(os.path.join(model_path, model_name), map_location='cpu')
716
+ checkpoint = torch.load(model_path, map_location='cpu')
717
+ model.load_state_dict(checkpoint['model_state_dict'])
718
+ del checkpoint
719
+ model = model.to(device, dtype=torch.float)
720
+
721
+ # cudnn
722
+ torch.backends.cudnn.benchmark = True
723
+ torch.backends.cudnn.enabled = True
724
+
725
+ # Predicting
726
+ model.eval()
727
+ with torch.no_grad():
728
+ pcd_points, jaw = obj2pcd(obj_path)
729
+ mesh = mesh_grid(pcd_points)
730
+
731
+ # move mesh to origin
732
+ with st.spinner("Patience please, AI at work. Grab a coffee while you wait☕!"):
733
+ vertices_points = np.asarray(mesh.vertices)
734
+ triangles_points = np.asarray(mesh.triangles)
735
+ N = triangles_points.shape[0]
736
+ cells = np.zeros((triangles_points.shape[0], 9))
737
+ cells = vertices_points[triangles_points].reshape(triangles_points.shape[0], 9)
738
+
739
+ mean_cell_centers = mesh.get_center()
740
+ cells[:, 0:3] -= mean_cell_centers[0:3]
741
+ cells[:, 3:6] -= mean_cell_centers[0:3]
742
+ cells[:, 6:9] -= mean_cell_centers[0:3]
743
+
744
+ v1 = np.zeros([triangles_points.shape[0], 3], dtype='float32')
745
+ v2 = np.zeros([triangles_points.shape[0], 3], dtype='float32')
746
+ v1[:, 0] = cells[:, 0] - cells[:, 3]
747
+ v1[:, 1] = cells[:, 1] - cells[:, 4]
748
+ v1[:, 2] = cells[:, 2] - cells[:, 5]
749
+ v2[:, 0] = cells[:, 3] - cells[:, 6]
750
+ v2[:, 1] = cells[:, 4] - cells[:, 7]
751
+ v2[:, 2] = cells[:, 5] - cells[:, 8]
752
+ mesh_normals = np.cross(v1, v2)
753
+ mesh_normal_length = np.linalg.norm(mesh_normals, axis=1)
754
+ mesh_normals[:, 0] /= mesh_normal_length[:]
755
+ mesh_normals[:, 1] /= mesh_normal_length[:]
756
+ mesh_normals[:, 2] /= mesh_normal_length[:]
757
+
758
+ # prepare input
759
+ points = vertices_points.copy()
760
+ points[:, 0:3] -= mean_cell_centers[0:3]
761
+ normals = np.nan_to_num(mesh_normals).copy()
762
+ barycenters = np.zeros((triangles_points.shape[0], 3))
763
+ s = np.sum(vertices_points[triangles_points], 1)
764
+ barycenters = 1 / 3 * s
765
+ center_points = barycenters.copy()
766
+ barycenters -= mean_cell_centers[0:3]
767
+
768
+ # normalized data
769
+ maxs = points.max(axis=0)
770
+ mins = points.min(axis=0)
771
+ means = points.mean(axis=0)
772
+ stds = points.std(axis=0)
773
+ nmeans = normals.mean(axis=0)
774
+ nstds = normals.std(axis=0)
775
+
776
+ for i in range(3):
777
+ cells[:, i] = (cells[:, i] - means[i]) / stds[i] # point 1
778
+ cells[:, i + 3] = (cells[:, i + 3] - means[i]) / stds[i] # point 2
779
+ cells[:, i + 6] = (cells[:, i + 6] - means[i]) / stds[i] # point 3
780
+ barycenters[:, i] = (barycenters[:, i] - mins[i]) / (maxs[i] - mins[i])
781
+ normals[:, i] = (normals[:, i] - nmeans[i]) / nstds[i]
782
+
783
+ X = np.column_stack((cells, barycenters, normals))
784
+
785
+ # computing A_S and A_L
786
+ A_S = np.zeros([X.shape[0], X.shape[0]], dtype='float32')
787
+ A_L = np.zeros([X.shape[0], X.shape[0]], dtype='float32')
788
+ D = distance_matrix(X[:, 9:12], X[:, 9:12])
789
+ A_S[D < 0.1] = 1.0
790
+ A_S = A_S / np.dot(np.sum(A_S, axis=1, keepdims=True), np.ones((1, X.shape[0])))
791
+
792
+ A_L[D < 0.2] = 1.0
793
+ A_L = A_L / np.dot(np.sum(A_L, axis=1, keepdims=True), np.ones((1, X.shape[0])))
794
+
795
+ # numpy -> torch.tensor
796
+ X = X.transpose(1, 0)
797
+ X = X.reshape([1, X.shape[0], X.shape[1]])
798
+ X = torch.from_numpy(X).to(device, dtype=torch.float)
799
+ A_S = A_S.reshape([1, A_S.shape[0], A_S.shape[1]])
800
+ A_L = A_L.reshape([1, A_L.shape[0], A_L.shape[1]])
801
+ A_S = torch.from_numpy(A_S).to(device, dtype=torch.float)
802
+ A_L = torch.from_numpy(A_L).to(device, dtype=torch.float)
803
+
804
+ tensor_prob_output = model(X, A_S, A_L).to(device, dtype=torch.float)
805
+ patch_prob_output = tensor_prob_output.cpu().numpy()
806
+
807
+ # refinement
808
+ with st.spinner("Refining..."):
809
+ round_factor = 100
810
+ patch_prob_output[patch_prob_output < 1.0e-6] = 1.0e-6
811
+
812
+ # unaries
813
+ unaries = -round_factor * np.log10(patch_prob_output)
814
+ unaries = unaries.astype(np.int32)
815
+ unaries = unaries.reshape(-1, num_classes)
816
+
817
+ # parawisex
818
+ pairwise = (1 - np.eye(num_classes, dtype=np.int32))
819
+
820
+ cells = cells.copy()
821
+
822
+ cell_ids = np.asarray(triangles_points)
823
+ lambda_c = 20
824
+ edges = np.empty([1, 3], order='C')
825
+ for i_node in range(cells.shape[0]):
826
+ # Find neighbors
827
+ nei = np.sum(np.isin(cell_ids, cell_ids[i_node, :]), axis=1)
828
+ nei_id = np.where(nei == 2)
829
+ for i_nei in nei_id[0][:]:
830
+ if i_node < i_nei:
831
+ cos_theta = np.dot(normals[i_node, 0:3], normals[i_nei, 0:3]) / np.linalg.norm(
832
+ normals[i_node, 0:3]) / np.linalg.norm(normals[i_nei, 0:3])
833
+ if cos_theta >= 1.0:
834
+ cos_theta = 0.9999
835
+ theta = np.arccos(cos_theta)
836
+ phi = np.linalg.norm(barycenters[i_node, :] - barycenters[i_nei, :])
837
+ if theta > np.pi / 2.0:
838
+ edges = np.concatenate(
839
+ (edges, np.array([i_node, i_nei, -np.log10(theta / np.pi) * phi]).reshape(1, 3)), axis=0)
840
+ else:
841
+ beta = 1 + np.linalg.norm(np.dot(normals[i_node, 0:3], normals[i_nei, 0:3]))
842
+ edges = np.concatenate(
843
+ (edges, np.array([i_node, i_nei, -beta * np.log10(theta / np.pi) * phi]).reshape(1, 3)),
844
+ axis=0)
845
+ edges = np.delete(edges, 0, 0)
846
+ edges[:, 2] *= lambda_c * round_factor
847
+ edges = edges.astype(np.int32)
848
+
849
+ refine_labels = cut_from_graph(edges, unaries, pairwise)
850
+ refine_labels = refine_labels.reshape([-1, 1])
851
+
852
+ predicted_labels_3 = refine_labels.reshape(refine_labels.shape[0])
853
+ mesh_to_points_main(jaw, pcd_points, center_points, predicted_labels_3)
854
+
855
+ import pyvista as pv
856
+
857
+ with st.spinner("Rendering..."):
858
+ # Load the .obj file
859
+ mesh = pv.read('file.obj')
860
+
861
+ # Load the JSON file
862
+ with open('dental-labels4.json', 'r') as file:
863
+ labels_data = json.load(file)
864
+
865
+ # Assuming labels_data['labels'] is a list of labels
866
+ labels = labels_data['labels']
867
+
868
+ # Make sure the number of labels matches the number of vertices or faces
869
+ assert len(labels) == mesh.n_points or len(labels) == mesh.n_cells
870
+
871
+ # If labels correspond to vertices
872
+ if len(labels) == mesh.n_points:
873
+ mesh.point_data['Labels'] = labels
874
+ # If labels correspond to faces
875
+ elif len(labels) == mesh.n_cells:
876
+ mesh.cell_data['Labels'] = labels
877
+
878
+ # Create a pyvista plotter
879
+ plotter = pv.Plotter()
880
+
881
+ cmap = plt.cm.get_cmap('jet', 27) # Using a colormap with sufficient distinct colors
882
+
883
+ colors = cmap(np.linspace(0, 1, 27)) # Generate colors
884
+
885
+ # Convert colors to a format acceptable by PyVista
886
+ colormap = mcolors.ListedColormap(colors)
887
+
888
+ # Add the mesh to the plotter with labels as a scalar field
889
+ #plotter.add_mesh(mesh, scalars='Labels', show_scalar_bar=True, cmap='jet')
890
+ plotter.add_mesh(mesh, scalars='Labels', show_scalar_bar=True, cmap=colormap, clim=[0, 27])
891
+
892
+ # Show the plot
893
+ #plotter.show()
894
+ ## Send to streamlit
895
+ stpyvista(plotter)
896
+
897
+ if __name__ == "__main__":
898
+ app = Segment()
apps/demo/pages/02_📙How_it_Works.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit import session_state as session
3
+
4
+ from PIL import Image
5
+
6
+ class TeethApp:
7
+ def __init__(self):
8
+ # Font
9
+ with open("utils/style.css") as css:
10
+ st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
11
+
12
+ # Logo
13
+ self.image_path = "utils/teeth-295404_1280.png"
14
+ self.image = Image.open(self.image_path)
15
+ width, height = self.image.size
16
+ scale = 12
17
+ new_width, new_height = width / scale, height / scale
18
+ self.image = self.image.resize((int(new_width), int(new_height)))
19
+
20
+ # Streamlit side navigation bar
21
+ st.sidebar.markdown("# AI ToothSeg")
22
+ st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
23
+ st.sidebar.markdown(" ")
24
+ st.sidebar.image(self.image, use_column_width=False)
25
+ st.markdown(
26
+ """
27
+ <style>
28
+ .css-1bxukto {
29
+ background-color: rgb(255, 255, 255) ;""",
30
+ unsafe_allow_html=True,
31
+ )
32
+
33
+ # Configure Streamlit page
34
+ st.set_page_config(page_title="Teeth Segmentation", page_icon="ⓘ")
35
+
36
+
37
+ class Guide(TeethApp):
38
+ def __init__(self):
39
+ TeethApp.__init__(self)
40
+ self.build_app()
41
+
42
+ def build_app(self):
43
+ st.title("AI-assited Tooth Segmentation")
44
+ st.markdown("This app automatically segments intra-oral scans of teeth using machine learning.")
45
+ st.markdown("Head to the 'Segment' tab to try it out!")
46
+ st.markdown("**Example:**")
47
+ st.image("illu.png")
48
+
49
+ if __name__ == "__main__":
50
+ app = Guide()
apps/demo/requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ streamlit==1.28.2
2
+ pyvista==0.36.1
3
+ pythreejs==2.4.2
4
+ stpyvista==0.0.5
5
+ open3d==0.15.1
6
+ torch==1.11.0
7
+ scikit-learn==0.23.2
8
+ scipy==1.5.2
9
+ cython==0.29.21
10
+ matplotlib==3.3.2
11
+ pillow==10.1.0
apps/demo/utils/style.css ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ @import url('https://fonts.googleapis.com/css2?family=Nunito:wght@400&display=swap');
2
+
3
+ html,
4
+ body,
5
+ [class*="css"] {
6
+ font-family: 'Nunito';
7
+ /* font-size: 16px; */
8
+ font-weight: 400;
9
+ color: #091747;
10
+ }
apps/demo/utils/teeth-295404_1280.png ADDED
apps/demo/ⓘ_Introduction.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit import session_state as session
3
+
4
+ from PIL import Image
5
+
6
+ class TeethApp:
7
+ def __init__(self):
8
+ # Font
9
+ with open("utils/style.css") as css:
10
+ st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
11
+
12
+ # Logo
13
+ self.image_path = "utils/teeth-295404_1280.png"
14
+ self.image = Image.open(self.image_path)
15
+ width, height = self.image.size
16
+ scale = 12
17
+ new_width, new_height = width / scale, height / scale
18
+ self.image = self.image.resize((int(new_width), int(new_height)))
19
+
20
+ # Streamlit side navigation bar
21
+ st.sidebar.markdown("# AI ToothSeg")
22
+ st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
23
+ st.sidebar.markdown(" ")
24
+ st.sidebar.image(self.image, use_column_width=False)
25
+ st.markdown(
26
+ """
27
+ <style>
28
+ .css-1bxukto {
29
+ background-color: rgb(255, 255, 255) ;""",
30
+ unsafe_allow_html=True,
31
+ )
32
+
33
+ # Configure Streamlit page
34
+ st.set_page_config(page_title="Teeth Segmentation", page_icon="ⓘ")
35
+
36
+ st.title("AI-assited Tooth Segmentation")
37
+ st.markdown("This app automatically segments intra-oral scans of teeth using machine learning.")
38
+ st.markdown("Head to the 'Segment' tab to try it out!")
39
+ st.markdown("**Example:**")
40
+ st.image("illu.png")