heart_disease / app.py
huahualuya's picture
Update app.py
e181517
raw
history blame
3.55 kB
import gradio as gr
import pickle
import pandas as pd
# load the data
heart=pd.read_csv('heart.dat', header=None, sep=' ', names=['age', 'sex', 'cp', 'trestbps', 'chol',
'fbs', 'restecg', 'thalach', 'exang',
'oldpeak', 'slope', 'ca', 'thal', 'heart disease'])
# load the saved models
with open('Tree.pkl', 'rb') as f:
tree_model = pickle.load(f)
with open('svm.pkl', 'rb') as f:
svm_model = pickle.load(f)
with open('QDA.pkl', 'rb') as f:
qda_model = pickle.load(f)
with open('MLP.pkl', 'rb') as f:
mlp_model = pickle.load(f)
with open('Log.pkl', 'rb') as f:
log_model = pickle.load(f)
with open('LDA.pkl', 'rb') as f:
lda_model = pickle.load(f)
with open('For.pkl', 'rb') as f:
for_model = pickle.load(f)
# Define the function to make predictions
def make_prediction(age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal, model_name):
# Create a pandas DataFrame from the inputs
input_data = pd.DataFrame({
'age': [age],
'sex': [sex],
'cp': [cp],
'trestbps': [trestbps],
'chol': [chol],
'fbs': [fbs],
'restecg': [restecg],
'thalach': [thalach],
'exang': [exang],
'oldpeak': [oldpeak],
'slope': [slope],
'ca': [ca],
'thal': [thal]
})
# feature scaling
from sklearn.model_selection import train_test_split
X = heart.drop('heart disease', axis=1)
y = heart['heart disease']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42, stratify=y)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_std = scaler.fit_transform(X_train)
# choose the model and make prediction
model_dict = {'Decision_Tree': tree_model,
'QDA': qda_model,
'Artificial_Neural_Networks': mlp_model,
'Logistic_Regression': log_model,
'LDA': lda_model,
'Random_Forest': for_model,
'SVM': svm_model}
model = model_dict[model_name]
input_data_std = scaler.transform(input_data)
probas = model.predict_proba(input_data_std)
outtext={1:'no heart_disease', 2:'heart disease'}
return {f"Probability of Class {i+1}": proba for i, proba in enumerate(probas[0])}
# Create the Gradio interface
inputs = [
gr.inputs.Number(label='age'),
gr.inputs.Radio(choices=[0,1], label='sex'),
gr.inputs.Dropdown(choices=[1,2,3,4], label='chest pain type'),
gr.inputs.Number(label='resting blood pressure'),
gr.inputs.Number(label='serum cholestoral'),
gr.inputs.Radio(choices=[0,1], label='fasting blood sugar'),
gr.inputs.Radio(choices=[0,1,2], label='resting electrocardiographic'),
gr.inputs.Number(label='maximum heart rate'),
gr.inputs.Radio(choices=[0,1], label='exercise induced angina'),
gr.inputs.Number(label='oldpeak'),
gr.inputs.Dropdown(choices=[1,2,3], label='slope ST'),
gr.inputs.Dropdown(choices=[0,1,2,3], label='major vessels'),
gr.inputs.Dropdown(choices=[3,6,7], label='thal'),
gr.inputs.Dropdown(choices=['Decision_Tree', 'QDA', 'Artificial_Neural_Networks', 'Logistic_Regression', 'LDA', 'Random_Forest', 'SVM'], label='Select the model')
]
outputs = gr.outputs.Label(label='Predicted class probabilities')
gr.Interface(fn=make_prediction, inputs=inputs, outputs=outputs).launch()