Spaces:
Sleeping
Sleeping
import subprocess | |
import time | |
import os | |
import gradio as gr | |
from openai import OpenAI | |
from huggingface_hub import snapshot_download | |
# Utility functions | |
def run_command(command, cwd=None): | |
"""Run a system command.""" | |
result = subprocess.run(command, shell=True, cwd=cwd, text=True, capture_output=True) | |
if result.returncode != 0: | |
print(f"Command failed: {command}") | |
print(f"Error: {result.stderr}") | |
exit(result.returncode) | |
else: | |
print(f"Command succeeded: {command}") | |
print(result.stdout) | |
# Model configuration | |
#MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" | |
MODEL_ID = "open-thoughts/OpenThinker-7B-Unverified" | |
QUANT = "Q5_K_M" | |
def setup_llama_cpp(): | |
"""Clone and compile llama.cpp repository.""" | |
if not os.path.exists('llama.cpp'): | |
run_command('git clone https://github.com/ggml-org/llama.cpp.git') | |
os.chdir('llama.cpp') | |
run_command('pip install -r requirements.txt') | |
run_command('cmake -B build') | |
run_command('cmake --build build --config Release -j 8') | |
os.chdir('..') | |
def setup_model(model_id): | |
"""Download and convert model to GGUF format, return quantized model path.""" | |
local_dir = model_id.split('/')[-1] | |
if not os.path.exists(local_dir): | |
snapshot_download(repo_id=model_id, local_dir=local_dir) | |
gguf_path = f"{local_dir}.gguf" | |
if not os.path.exists(gguf_path): | |
run_command(f'python llama.cpp/convert_hf_to_gguf.py ./{local_dir} --outfile {gguf_path}') | |
quantized_path = f"{local_dir}-{QUANT}.gguf" | |
if not os.path.exists(quantized_path): | |
run_command(f'./llama.cpp/build/bin/llama-quantize ./{gguf_path} {quantized_path} {QUANT}') | |
return quantized_path | |
def start_llama_server(model_path): | |
"""Start llama-server in the background.""" | |
cmd = f'./llama.cpp/build/bin/llama-server --host 0.0.0.0 --port 8080 --model {model_path} --ctx-size 32768' | |
process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
# Give the server a moment to start | |
time.sleep(5) | |
return process | |
# GUI-specific utilities | |
def format_time(seconds_float): | |
total_seconds = int(round(seconds_float)) | |
hours = total_seconds // 3600 | |
remaining_seconds = total_seconds % 3600 | |
minutes = remaining_seconds // 60 | |
seconds = remaining_seconds % 60 | |
if hours > 0: | |
return f"{hours}h {minutes}m {seconds}s" | |
elif minutes > 0: | |
return f"{minutes}m {seconds}s" | |
else: | |
return f"{seconds}s" | |
DESCRIPTION = ''' | |
# Duplicate the space for free private inference. | |
## DeepSeek-R1 Distill Qwen-1.5B Demo | |
A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities. | |
''' | |
CSS = """ | |
.spinner { animation: spin 1s linear infinite; display: inline-block; margin-right: 8px; } | |
@keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } | |
.thinking-summary { cursor: pointer; padding: 8px; background: #f5f5f5; border-radius: 4px; margin: 4px 0; } | |
.thought-content { padding: 10px; background: #f8f9fa; border-radius: 4px; margin: 5px 0; } | |
.thinking-container { border-left: 3px solid #facc15; padding-left: 10px; margin: 8px 0; background: #210c29; } | |
details:not([open]) .thinking-container { border-left-color: #290c15; } | |
details { border: 1px solid #e0e0e0 !important; border-radius: 8px !important; padding: 12px !important; margin: 8px 0 !important; transition: border-color 0.2s; } | |
""" | |
client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required") | |
# Update the user() function to use dictionary format | |
def user(message, history): | |
if not isinstance(message, str): | |
message = str(message) | |
history = history if history is not None else [] | |
# Append the user message as a dict | |
history.append({"role": "user", "content": message}) | |
return "", history | |
class ParserState: | |
__slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos', 'total_think_time'] | |
def __init__(self): | |
self.answer = "" | |
self.thought = "" | |
self.in_think = False | |
self.start_time = 0 | |
self.last_pos = 0 | |
self.total_think_time = 0.0 | |
def parse_response(text, state): | |
buffer = text[state.last_pos:] | |
state.last_pos = len(text) | |
while buffer: | |
if not state.in_think: | |
think_start = buffer.find('<think>') | |
if think_start != -1: | |
state.answer += buffer[:think_start] | |
state.in_think = True | |
state.start_time = time.perf_counter() | |
buffer = buffer[think_start + 7:] | |
else: | |
state.answer += buffer | |
break | |
else: | |
think_end = buffer.find('</think>') | |
if think_end != -1: | |
state.thought += buffer[:think_end] | |
duration = time.perf_counter() - state.start_time | |
state.total_think_time += duration | |
state.in_think = False | |
buffer = buffer[think_end + 8:] | |
else: | |
state.thought += buffer | |
break | |
elapsed = time.perf_counter() - state.start_time if state.in_think else 0 | |
return state, elapsed | |
def format_response(state, elapsed): | |
answer_part = state.answer.replace('<think>', '').replace('</think>', '') | |
collapsible = [] | |
collapsed = "<details open>" | |
if state.thought or state.in_think: | |
if state.in_think: | |
total_elapsed = state.total_think_time + elapsed | |
formatted_time = format_time(total_elapsed) | |
status = f"🌀 Thinking for {formatted_time}" | |
else: | |
formatted_time = format_time(state.total_think_time) | |
status = f"✅ Thought for {formatted_time}" | |
collapsed = "<details>" | |
collapsible.append( | |
f"{collapsed}<summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>" | |
) | |
return collapsible, answer_part | |
# Modified generate_response() using dictionary-format history | |
def generate_response(history, temperature, top_p, max_tokens, active_gen): | |
# Guard against empty history. | |
if not history: | |
yield [] | |
return | |
# Build messages: system message + conversation history. | |
messages = [{"role": "system", "content": "You are a helpful assistant."}] + history | |
full_response = "" | |
state = ParserState() | |
try: | |
stream = client.chat.completions.create( | |
model="", # Model name not needed with llama-server | |
messages=messages, | |
temperature=temperature, | |
top_p=top_p, | |
max_tokens=max_tokens, | |
stream=True | |
) | |
for chunk in stream: | |
if not active_gen[0]: | |
break | |
if chunk.choices[0].delta.content: | |
full_response += chunk.choices[0].delta.content | |
state, elapsed = parse_response(full_response, state) | |
collapsible, answer_part = format_response(state, elapsed) | |
# Update or add the assistant reply in history | |
if history and history[-1].get("role") == "assistant": | |
history[-1]["content"] = "\n\n".join(collapsible + [answer_part]) | |
else: | |
history.append({"role": "assistant", "content": "\n\n".join(collapsible + [answer_part])}) | |
yield history | |
state, elapsed = parse_response(full_response, state) | |
collapsible, answer_part = format_response(state, elapsed) | |
if history and history[-1].get("role") == "assistant": | |
history[-1]["content"] = "\n\n".join(collapsible + [answer_part]) | |
else: | |
history.append({"role": "assistant", "content": "\n\n".join(collapsible + [answer_part])}) | |
yield history | |
except Exception as e: | |
if history and history[-1].get("role") == "assistant": | |
history[-1]["content"] = f"Error: {str(e)}" | |
else: | |
history.append({"role": "assistant", "content": f"Error: {str(e)}"}) | |
yield history | |
finally: | |
active_gen[0] = False | |
# GUI setup | |
with gr.Blocks(css=CSS) as demo: | |
gr.Markdown(DESCRIPTION) | |
active_gen = gr.State([False]) | |
chatbot = gr.Chatbot( | |
elem_id="chatbot", | |
height=500, | |
show_label=False, | |
render_markdown=True, | |
value=[], # initial value as an empty list | |
type="messages" # use messages format (dict with role and content) | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
label="Message", | |
placeholder="Type your message...", | |
container=False, | |
scale=4 | |
) | |
submit_btn = gr.Button("Send", variant='primary', scale=1) | |
with gr.Column(scale=2): | |
with gr.Row(): | |
clear_btn = gr.Button("Clear", variant='secondary') | |
stop_btn = gr.Button("Stop", variant='stop') | |
with gr.Accordion("Parameters", open=False): | |
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p") | |
max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens") | |
gr.Examples( | |
examples=[ | |
["How many r's are in the word strawberry?"], | |
["Write 10 funny sentences that end in a fruit!"], | |
["Let’s play word chains! I’ll start: PIZZA. Your turn! Next word must start with… A!"] | |
], | |
inputs=msg, | |
label="Example Prompts" | |
) | |
submit_event = submit_btn.click( | |
user, [msg, chatbot], [msg, chatbot], queue=False | |
).then( | |
lambda: [True], outputs=active_gen | |
).then( | |
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot | |
) | |
msg.submit( | |
user, [msg, chatbot], [msg, chatbot], queue=False | |
).then( | |
lambda: [True], outputs=active_gen | |
).then( | |
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot | |
) | |
stop_btn.click( | |
lambda: [False], None, active_gen, cancels=[submit_event] | |
) | |
clear_btn.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
# Install dependencies | |
run_command('pip install llama-cpp-python openai') | |
setup_llama_cpp() | |
MODEL_PATH = setup_model(MODEL_ID) | |
# Start llama-server | |
server_process = start_llama_server(MODEL_PATH) | |
try: | |
# Launch GUI (set share=True if you need a public link) | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |
finally: | |
# Cleanup: terminate the server process when the GUI is closed | |
server_process.terminate() | |
server_process.wait() | |