Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
|
|
|
4 |
|
5 |
model_id = "hsuwill000/Fluently-v4-LCM-openvino"
|
6 |
|
@@ -9,6 +10,14 @@ WIDTH = 512
|
|
9 |
|
10 |
batch_size = -1 # Or set it to a specific positive integer if needed
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
pipe = OVStableDiffusionPipeline.from_pretrained(
|
13 |
model_id,
|
14 |
compile=False,
|
@@ -17,6 +26,13 @@ pipe = OVStableDiffusionPipeline.from_pretrained(
|
|
17 |
safety_checker=None,
|
18 |
use_safetensors=False,
|
19 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
print(pipe.scheduler.compatibles)
|
21 |
|
22 |
pipe.reshape(batch_size=batch_size, height=HIGH, width=WIDTH, num_images_per_prompt=1)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
|
4 |
+
from huggingface_hub import snapshot_download
|
5 |
|
6 |
model_id = "hsuwill000/Fluently-v4-LCM-openvino"
|
7 |
|
|
|
10 |
|
11 |
batch_size = -1 # Or set it to a specific positive integer if needed
|
12 |
|
13 |
+
class CustomOVModelVaeDecoder(OVModelVaeDecoder):
|
14 |
+
def __init__(
|
15 |
+
self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
|
16 |
+
):
|
17 |
+
super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
pipe = OVStableDiffusionPipeline.from_pretrained(
|
22 |
model_id,
|
23 |
compile=False,
|
|
|
26 |
safety_checker=None,
|
27 |
use_safetensors=False,
|
28 |
)
|
29 |
+
|
30 |
+
taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")
|
31 |
+
|
32 |
+
pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"),
|
33 |
+
parent_model = pipe,
|
34 |
+
|
35 |
+
|
36 |
print(pipe.scheduler.compatibles)
|
37 |
|
38 |
pipe.reshape(batch_size=batch_size, height=HIGH, width=WIDTH, num_images_per_prompt=1)
|