Spaces:
Runtime error
Runtime error
import sys | |
import os | |
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) | |
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
import time | |
import json | |
import numpy as np | |
import cv2 | |
import random | |
import torch | |
import torch.nn as nn | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from lib.options import BaseOptions | |
from lib.mesh_util import * | |
from lib.sample_util import * | |
from lib.train_util import * | |
from lib.data import * | |
from lib.model import * | |
from lib.geometry import index | |
# get options | |
opt = BaseOptions().parse() | |
def train_color(opt): | |
# set cuda | |
cuda = torch.device('cuda:%d' % opt.gpu_id) | |
train_dataset = TrainDataset(opt, phase='train') | |
test_dataset = TrainDataset(opt, phase='test') | |
projection_mode = train_dataset.projection_mode | |
# create data loader | |
train_data_loader = DataLoader(train_dataset, | |
batch_size=opt.batch_size, shuffle=not opt.serial_batches, | |
num_workers=opt.num_threads, pin_memory=opt.pin_memory) | |
print('train data size: ', len(train_data_loader)) | |
# NOTE: batch size should be 1 and use all the points for evaluation | |
test_data_loader = DataLoader(test_dataset, | |
batch_size=1, shuffle=False, | |
num_workers=opt.num_threads, pin_memory=opt.pin_memory) | |
print('test data size: ', len(test_data_loader)) | |
# create net | |
netG = HGPIFuNet(opt, projection_mode).to(device=cuda) | |
lr = opt.learning_rate | |
# Always use resnet for color regression | |
netC = ResBlkPIFuNet(opt).to(device=cuda) | |
optimizerC = torch.optim.Adam(netC.parameters(), lr=opt.learning_rate) | |
def set_train(): | |
netG.eval() | |
netC.train() | |
def set_eval(): | |
netG.eval() | |
netC.eval() | |
print('Using NetworkG: ', netG.name, 'networkC: ', netC.name) | |
# load checkpoints | |
if opt.load_netG_checkpoint_path is not None: | |
print('loading for net G ...', opt.load_netG_checkpoint_path) | |
netG.load_state_dict(torch.load(opt.load_netG_checkpoint_path, map_location=cuda)) | |
else: | |
model_path_G = '%s/%s/netG_latest' % (opt.checkpoints_path, opt.name) | |
print('loading for net G ...', model_path_G) | |
netG.load_state_dict(torch.load(model_path_G, map_location=cuda)) | |
if opt.load_netC_checkpoint_path is not None: | |
print('loading for net C ...', opt.load_netC_checkpoint_path) | |
netC.load_state_dict(torch.load(opt.load_netC_checkpoint_path, map_location=cuda)) | |
if opt.continue_train: | |
if opt.resume_epoch < 0: | |
model_path_C = '%s/%s/netC_latest' % (opt.checkpoints_path, opt.name) | |
else: | |
model_path_C = '%s/%s/netC_epoch_%d' % (opt.checkpoints_path, opt.name, opt.resume_epoch) | |
print('Resuming from ', model_path_C) | |
netC.load_state_dict(torch.load(model_path_C, map_location=cuda)) | |
os.makedirs(opt.checkpoints_path, exist_ok=True) | |
os.makedirs(opt.results_path, exist_ok=True) | |
os.makedirs('%s/%s' % (opt.checkpoints_path, opt.name), exist_ok=True) | |
os.makedirs('%s/%s' % (opt.results_path, opt.name), exist_ok=True) | |
opt_log = os.path.join(opt.results_path, opt.name, 'opt.txt') | |
with open(opt_log, 'w') as outfile: | |
outfile.write(json.dumps(vars(opt), indent=2)) | |
# training | |
start_epoch = 0 if not opt.continue_train else max(opt.resume_epoch,0) | |
for epoch in range(start_epoch, opt.num_epoch): | |
epoch_start_time = time.time() | |
set_train() | |
iter_data_time = time.time() | |
for train_idx, train_data in enumerate(train_data_loader): | |
iter_start_time = time.time() | |
# retrieve the data | |
image_tensor = train_data['img'].to(device=cuda) | |
calib_tensor = train_data['calib'].to(device=cuda) | |
color_sample_tensor = train_data['color_samples'].to(device=cuda) | |
image_tensor, calib_tensor = reshape_multiview_tensors(image_tensor, calib_tensor) | |
if opt.num_views > 1: | |
color_sample_tensor = reshape_sample_tensor(color_sample_tensor, opt.num_views) | |
rgb_tensor = train_data['rgbs'].to(device=cuda) | |
with torch.no_grad(): | |
netG.filter(image_tensor) | |
resC, error = netC.forward(image_tensor, netG.get_im_feat(), color_sample_tensor, calib_tensor, labels=rgb_tensor) | |
optimizerC.zero_grad() | |
error.backward() | |
optimizerC.step() | |
iter_net_time = time.time() | |
eta = ((iter_net_time - epoch_start_time) / (train_idx + 1)) * len(train_data_loader) - ( | |
iter_net_time - epoch_start_time) | |
if train_idx % opt.freq_plot == 0: | |
print( | |
'Name: {0} | Epoch: {1} | {2}/{3} | Err: {4:.06f} | LR: {5:.06f} | dataT: {6:.05f} | netT: {7:.05f} | ETA: {8:02d}:{9:02d}'.format( | |
opt.name, epoch, train_idx, len(train_data_loader), | |
error.item(), | |
lr, | |
iter_start_time - iter_data_time, | |
iter_net_time - iter_start_time, int(eta // 60), | |
int(eta - 60 * (eta // 60)))) | |
if train_idx % opt.freq_save == 0 and train_idx != 0: | |
torch.save(netC.state_dict(), '%s/%s/netC_latest' % (opt.checkpoints_path, opt.name)) | |
torch.save(netC.state_dict(), '%s/%s/netC_epoch_%d' % (opt.checkpoints_path, opt.name, epoch)) | |
if train_idx % opt.freq_save_ply == 0: | |
save_path = '%s/%s/pred_col.ply' % (opt.results_path, opt.name) | |
rgb = resC[0].transpose(0, 1).cpu() * 0.5 + 0.5 | |
points = color_sample_tensor[0].transpose(0, 1).cpu() | |
save_samples_rgb(save_path, points.detach().numpy(), rgb.detach().numpy()) | |
iter_data_time = time.time() | |
#### test | |
with torch.no_grad(): | |
set_eval() | |
if not opt.no_num_eval: | |
test_losses = {} | |
print('calc error (test) ...') | |
test_color_error = calc_error_color(opt, netG, netC, cuda, test_dataset, 100) | |
print('eval test | color error:', test_color_error) | |
test_losses['test_color'] = test_color_error | |
print('calc error (train) ...') | |
train_dataset.is_train = False | |
train_color_error = calc_error_color(opt, netG, netC, cuda, train_dataset, 100) | |
train_dataset.is_train = True | |
print('eval train | color error:', train_color_error) | |
test_losses['train_color'] = train_color_error | |
if not opt.no_gen_mesh: | |
print('generate mesh (test) ...') | |
for gen_idx in tqdm(range(opt.num_gen_mesh_test)): | |
test_data = random.choice(test_dataset) | |
save_path = '%s/%s/test_eval_epoch%d_%s.obj' % ( | |
opt.results_path, opt.name, epoch, test_data['name']) | |
gen_mesh_color(opt, netG, netC, cuda, test_data, save_path) | |
print('generate mesh (train) ...') | |
train_dataset.is_train = False | |
for gen_idx in tqdm(range(opt.num_gen_mesh_test)): | |
train_data = random.choice(train_dataset) | |
save_path = '%s/%s/train_eval_epoch%d_%s.obj' % ( | |
opt.results_path, opt.name, epoch, train_data['name']) | |
gen_mesh_color(opt, netG, netC, cuda, train_data, save_path) | |
train_dataset.is_train = True | |
if __name__ == '__main__': | |
train_color(opt) |