|
import PIL.Image |
|
import gradio as gr |
|
import base64 |
|
import time |
|
import os |
|
import google.generativeai as genai |
|
|
|
import pathlib |
|
|
|
txt_model = genai.GenerativeModel('gemini-pro') |
|
vis_model = genai.GenerativeModel('gemini-pro-vision') |
|
|
|
txt_prompt_1 = """The image contains the contents of a letter. I'd like to follow the request mentioned in the letter. Please provide 3 actionable items to assist me. When responding, use the following format: |
|
|
|
# Sender and Subject # |
|
1- Action 1 (no more than 20 words) |
|
2- Action 2 (no more than 20 words) |
|
3- Action 3 (no more than 20 words) |
|
|
|
For example: |
|
# From Richard regarding 'Shipping to Customer ABC' # |
|
1- Pack Product A |
|
2- Ship before 3:00 PM today |
|
3- Notify Richard after shipment |
|
""" |
|
|
|
txt_display_1 = 'content of email' |
|
|
|
import os |
|
|
|
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY') |
|
|
|
genai.configure(api_key=GOOGLE_API_KEY) |
|
|
|
|
|
def image_to_base64(image_path): |
|
with open(image_path, 'rb') as img: |
|
encoded_string = base64.b64encode(img.read()) |
|
return encoded_string.decode('utf-8') |
|
|
|
|
|
def app2_query(history,txt,img): |
|
if not img: |
|
history += [(txt,None)] |
|
return history |
|
base64 = image_to_base64(img) |
|
data_url = f"data:image/jpeg;base64,{base64}" |
|
history += [(f"{txt} ![]({data_url})", None)] |
|
return history |
|
|
|
|
|
def app2_response(history,text,img): |
|
if not img: |
|
response = txt_model.generate_content(text) |
|
history += [(None,response.text)] |
|
return history |
|
|
|
else: |
|
img = PIL.Image.open(img) |
|
response = vis_model.generate_content([text,img]) |
|
history += [(None,response.text)] |
|
return history |
|
|
|
|
|
|
|
def app1_query(img): |
|
if not img: |
|
return txt_prompt_1 |
|
base64 = image_to_base64(img) |
|
data_url = f"data:image/jpeg;base64,{base64}" |
|
outputText = [(f"{txt_display_1} ![]({data_url})", None)] |
|
return outputText |
|
|
|
|
|
def app1_response(img): |
|
if not img: |
|
response = txt_model.generate_content(txt_prompt_1) |
|
return response |
|
|
|
else: |
|
img = PIL.Image.open(img) |
|
response = vis_model.generate_content([txt_prompt_1,img]) |
|
return response.text |
|
|
|
|
|
|
|
|
|
def sentence_builder(animal, place): |
|
return f"""how many {animal}s from the {place} are shown in the picture?""" |
|
|
|
|
|
|
|
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app1: |
|
with gr.Column(): |
|
outputbox = gr.Textbox(label="here are the plans...") |
|
image_box = gr.Image(type="filepath") |
|
|
|
btn = gr.Button("Make a Plan") |
|
clicked = btn.click(app1_query, |
|
[image_box], |
|
outputbox |
|
).then(app1_response, |
|
[image_box], |
|
outputbox |
|
) |
|
gr.Markdown(""" |
|
# Make a Plan # |
|
|
|
- screen capture (Win + shift + S) |
|
- click **Make a Plan** to upload |
|
- await LLM Bot (Gemini, in this case) response |
|
- receive THREE actionable items |
|
|
|
|
|
[demo](https://youtu.be/lJ4jIAEVRNY) |
|
|
|
""") |
|
|
|
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app2: |
|
gr.Markdown("check the image...") |
|
with gr.Row(): |
|
image_box = gr.Image(type="filepath") |
|
|
|
chatbot = gr.Chatbot( |
|
scale = 2, |
|
height=750 |
|
) |
|
text_box = gr.Dropdown( |
|
["what is in the image", |
|
"provide alternative title for the image", |
|
"how many parts can be seen in the picture?", |
|
"check ID and expiration date"], |
|
label="Select--", |
|
info="ask Bot" |
|
) |
|
|
|
btn = gr.Button("Submit") |
|
clicked = btn.click(app2_query, |
|
[chatbot,text_box,image_box], |
|
chatbot |
|
).then(app2_response, |
|
[chatbot,text_box], |
|
chatbot |
|
) |
|
with gr.Blocks(theme='snehilsanyal/scikit-learn') as demo: |
|
gr.Markdown("## Workflow Bot ##") |
|
gr.TabbedInterface([app1, app2], ["Make a Plan!", "Check This!"]) |
|
|
|
demo.queue() |
|
demo.launch() |