todo / app (1).py
hsienchen's picture
Upload app (1).py
6130c7f verified
raw
history blame
4.5 kB
import PIL.Image
import gradio as gr
import base64
import time
import os
import google.generativeai as genai
import pathlib
txt_model = genai.GenerativeModel('gemini-pro')
vis_model = genai.GenerativeModel('gemini-pro-vision')
txt_prompt_1 = """The image contains the contents of a letter. I'd like to follow the request mentioned in the letter. Please provide 3 actionable items to assist me. When responding, use the following format:
# Sender and Subject #
1- Action 1 (no more than 20 words)
2- Action 2 (no more than 20 words)
3- Action 3 (no more than 20 words)
For example:
# From Richard regarding 'Shipping to Customer ABC' #
1- Pack Product A
2- Ship before 3:00 PM today
3- Notify Richard after shipment
"""
txt_display_1 = 'content of email'
import os
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
# Image to Base 64 Converter
def image_to_base64(image_path):
with open(image_path, 'rb') as img:
encoded_string = base64.b64encode(img.read())
return encoded_string.decode('utf-8')
# Function that takes User Inputs and displays it on ChatUI
def app2_query(history,txt,img):
if not img:
history += [(txt,None)]
return history
base64 = image_to_base64(img)
data_url = f"data:image/jpeg;base64,{base64}"
history += [(f"{txt} ![]({data_url})", None)]
return history
# Function that takes User Inputs, generates Response and displays on Chat UI
def app2_response(history,text,img):
if not img:
response = txt_model.generate_content(text)
history += [(None,response.text)]
return history
else:
img = PIL.Image.open(img)
response = vis_model.generate_content([text,img])
history += [(None,response.text)]
return history
# Function that takes User Inputs and displays it on ChatUI
def app1_query(img):
if not img:
return txt_prompt_1
base64 = image_to_base64(img)
data_url = f"data:image/jpeg;base64,{base64}"
outputText = [(f"{txt_display_1} ![]({data_url})", None)]
return outputText
# Function that takes User Inputs, generates Response and displays on Chat UI
def app1_response(img):
if not img:
response = txt_model.generate_content(txt_prompt_1)
return response
else:
img = PIL.Image.open(img)
response = vis_model.generate_content([txt_prompt_1,img])
return response.text
# Interface Code- Selector method
def sentence_builder(animal, place):
return f"""how many {animal}s from the {place} are shown in the picture?"""
# gradio block
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app1:
with gr.Column():
outputbox = gr.Textbox(label="here are the plans...")
image_box = gr.Image(type="filepath")
btn = gr.Button("Make a Plan")
clicked = btn.click(app1_query,
[image_box],
outputbox
).then(app1_response,
[image_box],
outputbox
)
gr.Markdown("""
# Make a Plan #
- screen capture (Win + shift + S)
- click **Make a Plan** to upload
- await LLM Bot (Gemini, in this case) response
- receive THREE actionable items
[demo](https://youtu.be/lJ4jIAEVRNY)
""")
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app2:
gr.Markdown("check the image...")
with gr.Row():
image_box = gr.Image(type="filepath")
chatbot = gr.Chatbot(
scale = 2,
height=750
)
text_box = gr.Dropdown(
["what is in the image",
"provide alternative title for the image",
"how many parts can be seen in the picture?",
"check ID and expiration date"],
label="Select--",
info="ask Bot"
)
btn = gr.Button("Submit")
clicked = btn.click(app2_query,
[chatbot,text_box,image_box],
chatbot
).then(app2_response,
[chatbot,text_box],
chatbot
)
with gr.Blocks(theme='snehilsanyal/scikit-learn') as demo:
gr.Markdown("## Workflow Bot ##")
gr.TabbedInterface([app1, app2], ["Make a Plan!", "Check This!"])
demo.queue()
demo.launch()