YOLOW / third_party /mmyolo /demo /image_demo.py
stevengrove
initial commit
186701e
# Copyright (c) OpenMMLab. All rights reserved.
import os
from argparse import ArgumentParser
from pathlib import Path
import mmcv
from mmdet.apis import inference_detector, init_detector
from mmengine.config import Config, ConfigDict
from mmengine.logging import print_log
from mmengine.utils import ProgressBar, path
from mmyolo.registry import VISUALIZERS
from mmyolo.utils import switch_to_deploy
from mmyolo.utils.labelme_utils import LabelmeFormat
from mmyolo.utils.misc import get_file_list, show_data_classes
def parse_args():
parser = ArgumentParser()
parser.add_argument(
'img', help='Image path, include image file, dir and URL.')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--out-dir', default='./output', help='Path to output file')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--show', action='store_true', help='Show the detection results')
parser.add_argument(
'--deploy',
action='store_true',
help='Switch model to deployment mode')
parser.add_argument(
'--tta',
action='store_true',
help='Whether to use test time augmentation')
parser.add_argument(
'--score-thr', type=float, default=0.3, help='Bbox score threshold')
parser.add_argument(
'--class-name',
nargs='+',
type=str,
help='Only Save those classes if set')
parser.add_argument(
'--to-labelme',
action='store_true',
help='Output labelme style label file')
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.to_labelme and args.show:
raise RuntimeError('`--to-labelme` or `--show` only '
'can choose one at the same time.')
config = args.config
if isinstance(config, (str, Path)):
config = Config.fromfile(config)
elif not isinstance(config, Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
if 'init_cfg' in config.model.backbone:
config.model.backbone.init_cfg = None
if args.tta:
assert 'tta_model' in config, 'Cannot find ``tta_model`` in config.' \
" Can't use tta !"
assert 'tta_pipeline' in config, 'Cannot find ``tta_pipeline`` ' \
"in config. Can't use tta !"
config.model = ConfigDict(**config.tta_model, module=config.model)
test_data_cfg = config.test_dataloader.dataset
while 'dataset' in test_data_cfg:
test_data_cfg = test_data_cfg['dataset']
# batch_shapes_cfg will force control the size of the output image,
# it is not compatible with tta.
if 'batch_shapes_cfg' in test_data_cfg:
test_data_cfg.batch_shapes_cfg = None
test_data_cfg.pipeline = config.tta_pipeline
# TODO: TTA mode will error if cfg_options is not set.
# This is an mmdet issue and needs to be fixed later.
# build the model from a config file and a checkpoint file
model = init_detector(
config, args.checkpoint, device=args.device, cfg_options={})
if args.deploy:
switch_to_deploy(model)
if not args.show:
path.mkdir_or_exist(args.out_dir)
# init visualizer
visualizer = VISUALIZERS.build(model.cfg.visualizer)
visualizer.dataset_meta = model.dataset_meta
# get file list
files, source_type = get_file_list(args.img)
# get model class name
dataset_classes = model.dataset_meta.get('classes')
# ready for labelme format if it is needed
to_label_format = LabelmeFormat(classes=dataset_classes)
# check class name
if args.class_name is not None:
for class_name in args.class_name:
if class_name in dataset_classes:
continue
show_data_classes(dataset_classes)
raise RuntimeError(
'Expected args.class_name to be one of the list, '
f'but got "{class_name}"')
# start detector inference
progress_bar = ProgressBar(len(files))
for file in files:
result = inference_detector(model, file)
img = mmcv.imread(file)
img = mmcv.imconvert(img, 'bgr', 'rgb')
if source_type['is_dir']:
filename = os.path.relpath(file, args.img).replace('/', '_')
else:
filename = os.path.basename(file)
out_file = None if args.show else os.path.join(args.out_dir, filename)
progress_bar.update()
# Get candidate predict info with score threshold
pred_instances = result.pred_instances[
result.pred_instances.scores > args.score_thr]
if args.to_labelme:
# save result to labelme files
out_file = out_file.replace(
os.path.splitext(out_file)[-1], '.json')
to_label_format(pred_instances, result.metainfo, out_file,
args.class_name)
continue
visualizer.add_datasample(
filename,
img,
data_sample=result,
draw_gt=False,
show=args.show,
wait_time=0,
out_file=out_file,
pred_score_thr=args.score_thr)
if not args.show and not args.to_labelme:
print_log(
f'\nResults have been saved at {os.path.abspath(args.out_dir)}')
elif args.to_labelme:
print_log('\nLabelme format label files '
f'had all been saved in {args.out_dir}')
if __name__ == '__main__':
main()