Hendrik Schroeter commited on
Commit
74a3076
·
unverified ·
1 Parent(s): b8708f4

Clear axis before plotting again

Browse files
Files changed (2) hide show
  1. README.md +1 -1
  2. app.py +10 -4
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: DeepFilterNet
3
  emoji: 💩
4
  colorFrom: gray
5
  colorTo: red
 
1
  ---
2
+ title: DeepFilterNet2
3
  emoji: 💩
4
  colorFrom: gray
5
  colorTo: red
app.py CHANGED
@@ -21,6 +21,10 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
  model, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True)
22
  model = model.to(device=device).eval()
23
 
 
 
 
 
24
  fig_noisy, ax_noisy = plt.subplots(figsize=(15.2, 5))
25
  fig_noisy.set_tight_layout(True)
26
  fig_enh, ax_enh = plt.subplots(figsize=(15.2, 5))
@@ -124,15 +128,17 @@ def demo_fn(
124
  lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0)
125
  lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1)
126
  enhanced = enhanced * lim
127
- # if meta.sample_rate != sr:
128
- # enhanced = resample(enhanced, sr, meta.sample_rate)
129
- # noisy = resample(noisy, sr, meta.sample_rate)
130
- # sr = meta.sample_rate
131
  noisy_fn = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name
132
  save_audio(noisy_fn, sample, sr)
133
  enhanced_fn = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name
134
  save_audio(enhanced_fn, enhanced, sr)
135
  logger.info(f"saved audios: {noisy_fn}, {enhanced_fn}")
 
 
136
  return (
137
  noisy_fn,
138
  spec_figure(sample, sr=sr, figure=fig_noisy, ax=ax_noisy),
 
21
  model, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True)
22
  model = model.to(device=device).eval()
23
 
24
+ fig_noisy: plt.Figure
25
+ fig_enh: plt.Figure
26
+ ax_noisy: plt.Axes
27
+ ax_enh: plt.Axes
28
  fig_noisy, ax_noisy = plt.subplots(figsize=(15.2, 5))
29
  fig_noisy.set_tight_layout(True)
30
  fig_enh, ax_enh = plt.subplots(figsize=(15.2, 5))
 
128
  lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0)
129
  lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1)
130
  enhanced = enhanced * lim
131
+ if meta.sample_rate != sr:
132
+ enhanced = resample(enhanced, sr, meta.sample_rate)
133
+ sample = resample(sample, sr, meta.sample_rate)
134
+ sr = meta.sample_rate
135
  noisy_fn = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name
136
  save_audio(noisy_fn, sample, sr)
137
  enhanced_fn = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name
138
  save_audio(enhanced_fn, enhanced, sr)
139
  logger.info(f"saved audios: {noisy_fn}, {enhanced_fn}")
140
+ ax_noisy.clear()
141
+ ax_enh.clear()
142
  return (
143
  noisy_fn,
144
  spec_figure(sample, sr=sr, figure=fig_noisy, ax=ax_noisy),