Spaces:
Running
Running
Hendrik Schroeter
commited on
Clear axis before plotting again
Browse files
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 💩
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: red
|
|
|
|
| 1 |
---
|
| 2 |
+
title: DeepFilterNet2
|
| 3 |
emoji: 💩
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: red
|
app.py
CHANGED
|
@@ -21,6 +21,10 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
| 21 |
model, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True)
|
| 22 |
model = model.to(device=device).eval()
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
fig_noisy, ax_noisy = plt.subplots(figsize=(15.2, 5))
|
| 25 |
fig_noisy.set_tight_layout(True)
|
| 26 |
fig_enh, ax_enh = plt.subplots(figsize=(15.2, 5))
|
|
@@ -124,15 +128,17 @@ def demo_fn(
|
|
| 124 |
lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0)
|
| 125 |
lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1)
|
| 126 |
enhanced = enhanced * lim
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
noisy_fn = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name
|
| 132 |
save_audio(noisy_fn, sample, sr)
|
| 133 |
enhanced_fn = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name
|
| 134 |
save_audio(enhanced_fn, enhanced, sr)
|
| 135 |
logger.info(f"saved audios: {noisy_fn}, {enhanced_fn}")
|
|
|
|
|
|
|
| 136 |
return (
|
| 137 |
noisy_fn,
|
| 138 |
spec_figure(sample, sr=sr, figure=fig_noisy, ax=ax_noisy),
|
|
|
|
| 21 |
model, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True)
|
| 22 |
model = model.to(device=device).eval()
|
| 23 |
|
| 24 |
+
fig_noisy: plt.Figure
|
| 25 |
+
fig_enh: plt.Figure
|
| 26 |
+
ax_noisy: plt.Axes
|
| 27 |
+
ax_enh: plt.Axes
|
| 28 |
fig_noisy, ax_noisy = plt.subplots(figsize=(15.2, 5))
|
| 29 |
fig_noisy.set_tight_layout(True)
|
| 30 |
fig_enh, ax_enh = plt.subplots(figsize=(15.2, 5))
|
|
|
|
| 128 |
lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0)
|
| 129 |
lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1)
|
| 130 |
enhanced = enhanced * lim
|
| 131 |
+
if meta.sample_rate != sr:
|
| 132 |
+
enhanced = resample(enhanced, sr, meta.sample_rate)
|
| 133 |
+
sample = resample(sample, sr, meta.sample_rate)
|
| 134 |
+
sr = meta.sample_rate
|
| 135 |
noisy_fn = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name
|
| 136 |
save_audio(noisy_fn, sample, sr)
|
| 137 |
enhanced_fn = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name
|
| 138 |
save_audio(enhanced_fn, enhanced, sr)
|
| 139 |
logger.info(f"saved audios: {noisy_fn}, {enhanced_fn}")
|
| 140 |
+
ax_noisy.clear()
|
| 141 |
+
ax_enh.clear()
|
| 142 |
return (
|
| 143 |
noisy_fn,
|
| 144 |
spec_figure(sample, sr=sr, figure=fig_noisy, ax=ax_noisy),
|