hsaripalli commited on
Commit
c4368ce
1 Parent(s): 40849b7

code changes

Browse files
Methane_Classifier/app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AUTOGENERATED! DO NOT EDIT! File to edit: ../methane-plume-classification-yes-or-no.ipynb.
2
+
3
+ # %% auto 0
4
+ __all__ = ['temp', 'categories', 'image', 'label', 'examples', 'intf', 'classify_image']
5
+
6
+ # %% ../methane-plume-classification-yes-or-no.ipynb 2
7
+ import warnings
8
+ warnings.filterwarnings('ignore')
9
+
10
+ # %% ../methane-plume-classification-yes-or-no.ipynb 3
11
+ import pathlib
12
+ temp = pathlib.PosixPath
13
+ pathlib.PosixPath = pathlib.WindowsPath
14
+
15
+ # %% ../methane-plume-classification-yes-or-no.ipynb 4
16
+ import fastbook
17
+ import pandas as pd
18
+ import numpy as np
19
+ import os
20
+
21
+ from fastbook import *
22
+ from fastai.vision.widgets import *
23
+ import gradio as gr
24
+
25
+ # %% ../methane-plume-classification-yes-or-no.ipynb 20
26
+ categories = ('No Plume', 'Plume')
27
+
28
+ def classify_image(img):
29
+ pred, idx, probs = learn.predict(img)
30
+ return dict(zip(categories, map(float, probs)))
31
+
32
+ # %% ../methane-plume-classification-yes-or-no.ipynb 22
33
+ image = gr.inputs.Image(shape = (152, 152))
34
+ label = gr.outputs.Label()
35
+ examples = ['plume1.png', 'plume2.png', 'noplume1.png', 'noplume2.png']
36
+
37
+ intf = gr.Interface(fn = classify_image, inputs = image, outputs = label, examples = examples)
38
+ intf.launch(inline = False)
app.py CHANGED
@@ -1,7 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
1
+ # AUTOGENERATED! DO NOT EDIT! File to edit: ../methane-plume-classification-yes-or-no.ipynb.
2
+
3
+ # %% auto 0
4
+ __all__ = ['temp', 'categories', 'image', 'label', 'examples', 'intf', 'classify_image']
5
+
6
+ # %% ../methane-plume-classification-yes-or-no.ipynb 2
7
+ import warnings
8
+ warnings.filterwarnings('ignore')
9
+
10
+ # %% ../methane-plume-classification-yes-or-no.ipynb 3
11
+ import pathlib
12
+ temp = pathlib.PosixPath
13
+ pathlib.PosixPath = pathlib.WindowsPath
14
+
15
+ # %% ../methane-plume-classification-yes-or-no.ipynb 4
16
+ import fastbook
17
+ import pandas as pd
18
+ import numpy as np
19
+ import os
20
+
21
+ from fastbook import *
22
+ from fastai.vision.widgets import *
23
  import gradio as gr
24
 
25
+ # %% ../methane-plume-classification-yes-or-no.ipynb 20
26
+ categories = ('No Plume', 'Plume')
27
+
28
+ def classify_image(img):
29
+ pred, idx, probs = learn.predict(img)
30
+ return dict(zip(categories, map(float, probs)))
31
+
32
+ # %% ../methane-plume-classification-yes-or-no.ipynb 22
33
+ image = gr.inputs.Image(shape = (152, 152))
34
+ label = gr.outputs.Label()
35
+ examples = ['plume1.png', 'plume2.png', 'noplume1.png', 'noplume2.png']
36
 
37
+ intf = gr.Interface(fn = classify_image, inputs = image, outputs = label, examples = examples)
38
+ intf.launch(inline = False)
methane-plume-classification-yes-or-no.ipynb CHANGED
@@ -36,6 +36,40 @@
36
  "# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session"
37
  ]
38
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  {
40
  "cell_type": "code",
41
  "execution_count": null,
@@ -51,7 +85,8 @@
51
  },
52
  "outputs": [],
53
  "source": [
54
- "!pip install fastbook\n",
 
55
  "import fastbook\n",
56
  "import pandas as pd\n",
57
  "import numpy as np\n",
@@ -62,6 +97,17 @@
62
  "import gradio as gr"
63
  ]
64
  },
 
 
 
 
 
 
 
 
 
 
 
65
  {
66
  "cell_type": "code",
67
  "execution_count": null,
@@ -280,6 +326,85 @@
280
  "learn.export('methane plume detect.pkl')"
281
  ]
282
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283
  {
284
  "cell_type": "code",
285
  "execution_count": null,
 
36
  "# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session"
37
  ]
38
  },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": 4,
42
+ "metadata": {},
43
+ "outputs": [],
44
+ "source": [
45
+ "#|default_exp app"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": null,
51
+ "metadata": {},
52
+ "outputs": [],
53
+ "source": [
54
+ "#|export\n",
55
+ "\n",
56
+ "import warnings\n",
57
+ "warnings.filterwarnings('ignore')"
58
+ ]
59
+ },
60
+ {
61
+ "cell_type": "code",
62
+ "execution_count": null,
63
+ "metadata": {},
64
+ "outputs": [],
65
+ "source": [
66
+ "#|export\n",
67
+ "\n",
68
+ "import pathlib\n",
69
+ "temp = pathlib.PosixPath\n",
70
+ "pathlib.PosixPath = pathlib.WindowsPath"
71
+ ]
72
+ },
73
  {
74
  "cell_type": "code",
75
  "execution_count": null,
 
85
  },
86
  "outputs": [],
87
  "source": [
88
+ "#|export\n",
89
+ "\n",
90
  "import fastbook\n",
91
  "import pandas as pd\n",
92
  "import numpy as np\n",
 
97
  "import gradio as gr"
98
  ]
99
  },
100
+ {
101
+ "cell_type": "code",
102
+ "execution_count": null,
103
+ "metadata": {},
104
+ "outputs": [],
105
+ "source": [
106
+ "im = PILImage.create('plume1.png')\n",
107
+ "im.thumbnail((182,192))\n",
108
+ "im"
109
+ ]
110
+ },
111
  {
112
  "cell_type": "code",
113
  "execution_count": null,
 
326
  "learn.export('methane plume detect.pkl')"
327
  ]
328
  },
329
+ {
330
+ "cell_type": "code",
331
+ "execution_count": null,
332
+ "metadata": {
333
+ "scrolled": true
334
+ },
335
+ "outputs": [],
336
+ "source": [
337
+ "learn = load_learner('methane plume detect.pkl')"
338
+ ]
339
+ },
340
+ {
341
+ "cell_type": "code",
342
+ "execution_count": null,
343
+ "metadata": {},
344
+ "outputs": [],
345
+ "source": [
346
+ "learn.predict(im)"
347
+ ]
348
+ },
349
+ {
350
+ "cell_type": "code",
351
+ "execution_count": null,
352
+ "metadata": {},
353
+ "outputs": [],
354
+ "source": [
355
+ "#|export\n",
356
+ "\n",
357
+ "categories = ('No Plume', 'Plume')\n",
358
+ "\n",
359
+ "def classify_image(img):\n",
360
+ " pred, idx, probs = learn.predict(img)\n",
361
+ " return dict(zip(categories, map(float, probs)))"
362
+ ]
363
+ },
364
+ {
365
+ "cell_type": "code",
366
+ "execution_count": null,
367
+ "metadata": {},
368
+ "outputs": [],
369
+ "source": [
370
+ "classify_image(im)"
371
+ ]
372
+ },
373
+ {
374
+ "cell_type": "code",
375
+ "execution_count": null,
376
+ "metadata": {},
377
+ "outputs": [],
378
+ "source": [
379
+ "#|export\n",
380
+ "\n",
381
+ "image = gr.inputs.Image(shape = (152, 152))\n",
382
+ "label = gr.outputs.Label()\n",
383
+ "examples = ['plume1.png', 'plume2.png', 'noplume1.png', 'noplume2.png']\n",
384
+ "\n",
385
+ "intf = gr.Interface(fn = classify_image, inputs = image, outputs = label, examples = examples)\n",
386
+ "intf.launch(inline = False)"
387
+ ]
388
+ },
389
+ {
390
+ "cell_type": "code",
391
+ "execution_count": 5,
392
+ "metadata": {},
393
+ "outputs": [
394
+ {
395
+ "name": "stdout",
396
+ "output_type": "stream",
397
+ "text": [
398
+ "Export successful\n"
399
+ ]
400
+ }
401
+ ],
402
+ "source": [
403
+ "import nbdev\n",
404
+ "nbdev.export.nb_export('methane-plume-classification-yes-or-no.ipynb', 'app')\n",
405
+ "print('Export successful')"
406
+ ]
407
+ },
408
  {
409
  "cell_type": "code",
410
  "execution_count": null,