hoyinli commited on
Commit
2e55d37
Β·
1 Parent(s): 8eabfde

Delete App.py

Browse files
Files changed (1) hide show
  1. App.py +0 -94
App.py DELETED
@@ -1,94 +0,0 @@
1
- # Import necessary libraries
2
- import streamlit as st
3
- from streamlit_chat import message
4
- import tempfile
5
- from langchain.document_loaders.csv_loader import CSVLoader
6
- from langchain.embeddings import HuggingFaceEmbeddings
7
- from langchain.vectorstores import FAISS
8
- from langchain.llms import CTransformers
9
- from langchain.chains import ConversationalRetrievalChain
10
-
11
- import sys
12
- sys.path.append(r"vectorstore/db_faiss")
13
- import dataset_utils
14
-
15
- # Define the path for generated embeddings
16
- DB_FAISS_PATH = 'vectorstore/db_faiss'
17
-
18
- # Load the model of choice
19
- def load_llm():
20
- llm = CTransformers(
21
- model="Phind-CodeLlama-34B-v1",
22
- model_type="llama",
23
- max_new_tokens=512,
24
- temperature=0.5
25
- )
26
- return llm
27
-
28
- # Set the title for the Streamlit app
29
- st.title("Llama2 Chat CSV - πŸ¦œπŸ¦™")
30
-
31
- # Create a file uploader in the sidebar
32
- uploaded_file = st.sidebar.file_uploader("Upload File", type="csv")
33
-
34
- # Handle file upload
35
- if uploaded_file:
36
- with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
37
- tmp_file.write(uploaded_file.getvalue())
38
- tmp_file_path = tmp_file.name
39
-
40
- # Load CSV data using CSVLoader
41
- loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={'delimiter': ','})
42
- data = loader.load()
43
-
44
- # Create embeddings using Sentence Transformers
45
- embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'})
46
-
47
- # Create a FAISS vector store and save embeddings
48
- db = FAISS.from_documents(data, embeddings)
49
- db.save_local(DB_FAISS_PATH)
50
-
51
- # Load the language model
52
- llm = load_llm()
53
-
54
- # Create a conversational chain
55
- chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
56
-
57
- # Function for conversational chat
58
- def conversational_chat(query):
59
- result = chain({"question": query, "chat_history": st.session_state['history']})
60
- st.session_state['history'].append((query, result["answer"]))
61
- return result["answer"]
62
-
63
- # Initialize chat history
64
- if 'history' not in st.session_state:
65
- st.session_state['history'] = []
66
-
67
- # Initialize messages
68
- if 'generated' not in st.session_state:
69
- st.session_state['generated'] = ["Hello ! Ask me(LLAMA2) about " + uploaded_file.name + " πŸ€—"]
70
-
71
- if 'past' not in st.session_state:
72
- st.session_state['past'] = ["Hey ! πŸ‘‹"]
73
-
74
- # Create containers for chat history and user input
75
- response_container = st.container()
76
- container = st.container()
77
-
78
- # User input form
79
- with container:
80
- with st.form(key='my_form', clear_on_submit=True):
81
- user_input = st.text_input("Query:", placeholder="Talk to csv data πŸ‘‰ (:", key='input')
82
- submit_button = st.form_submit_button(label='Send')
83
-
84
- if submit_button and user_input:
85
- output = conversational_chat(user_input)
86
- st.session_state['past'].append(user_input)
87
- st.session_state['generated'].append(output)
88
-
89
- # Display chat history
90
- if st.session_state['generated']:
91
- with response_container:
92
- for i in range(len(st.session_state['generated'])):
93
- message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
94
- message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")