hoyinli commited on
Commit
0a5815c
β€’
1 Parent(s): f0cfc2b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -0
app.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ import streamlit as st
3
+ from streamlit_chat import message
4
+ import tempfile
5
+ from langchain.document_loaders.csv_loader import CSVLoader
6
+ from langchain.embeddings import HuggingFaceEmbeddings
7
+ from langchain.vectorstores import FAISS
8
+ from langchain.llms import CTransformers
9
+ from langchain.chains import ConversationalRetrievalChain
10
+
11
+ import sys
12
+ sys.path.append(r"vectorstore/db_faiss")
13
+ import dataset_utils
14
+
15
+ # Define the path for generated embeddings
16
+ DB_FAISS_PATH = 'vectorstore/db_faiss'
17
+
18
+ # Load the model of choice
19
+ def load_llm():
20
+ llm = CTransformers(
21
+ model="llama-2-7b-chat.ggmlv3.q8_0.bin",
22
+ model_type="llama",
23
+ max_new_tokens=512,
24
+ temperature=0.5
25
+ )
26
+ return llm
27
+
28
+ # Set the title for the Streamlit app
29
+ st.title("Llama2 Chat CSV - πŸ¦œπŸ¦™")
30
+
31
+ # Create a file uploader in the sidebar
32
+ uploaded_file = st.sidebar.file_uploader("Upload File", type="csv")
33
+
34
+ # Handle file upload
35
+ if uploaded_file:
36
+ with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
37
+ tmp_file.write(uploaded_file.getvalue())
38
+ tmp_file_path = tmp_file.name
39
+
40
+ # Load CSV data using CSVLoader
41
+ loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={'delimiter': ','})
42
+ data = loader.load()
43
+
44
+ # Create embeddings using Sentence Transformers
45
+ embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'})
46
+
47
+ # Create a FAISS vector store and save embeddings
48
+ db = FAISS.from_documents(data, embeddings)
49
+ db.save_local(DB_FAISS_PATH)
50
+
51
+ # Load the language model
52
+ llm = load_llm()
53
+
54
+ # Create a conversational chain
55
+ chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
56
+
57
+ # Function for conversational chat
58
+ def conversational_chat(query):
59
+ result = chain({"question": query, "chat_history": st.session_state['history']})
60
+ st.session_state['history'].append((query, result["answer"]))
61
+ return result["answer"]
62
+
63
+ # Initialize chat history
64
+ if 'history' not in st.session_state:
65
+ st.session_state['history'] = []
66
+
67
+ # Initialize messages
68
+ if 'generated' not in st.session_state:
69
+ st.session_state['generated'] = ["Hello ! Ask me(LLAMA2) about " + uploaded_file.name + " πŸ€—"]
70
+
71
+ if 'past' not in st.session_state:
72
+ st.session_state['past'] = ["Hey ! πŸ‘‹"]
73
+
74
+ # Create containers for chat history and user input
75
+ response_container = st.container()
76
+ container = st.container()
77
+
78
+ # User input form
79
+ with container:
80
+ with st.form(key='my_form', clear_on_submit=True):
81
+ user_input = st.text_input("Query:", placeholder="Talk to csv data πŸ‘‰ (:", key='input')
82
+ submit_button = st.form_submit_button(label='Send')
83
+
84
+ if submit_button and user_input:
85
+ output = conversational_chat(user_input)
86
+ st.session_state['past'].append(user_input)
87
+ st.session_state['generated'].append(output)
88
+
89
+ # Display chat history
90
+ if st.session_state['generated']:
91
+ with response_container:
92
+ for i in range(len(st.session_state['generated'])):
93
+ message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
94
+ message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")