Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
from PIL import ImageOps
|
4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def create_cereal_box(input_image):
|
7 |
# Convert the input numpy array to PIL Image
|
8 |
cover_img = Image.fromarray((input_image.astype(np.uint8)))
|
9 |
|
10 |
# Load the template image
|
11 |
-
template_img = Image.open('CerealBoxMaker/template.jpeg')
|
12 |
|
13 |
-
#
|
14 |
scaling_factor = 1.5
|
15 |
-
|
16 |
-
# Resize cover image
|
17 |
rect_height = int(template_img.height * 0.32)
|
18 |
new_width = int(rect_height * 0.70)
|
19 |
cover_resized = cover_img.resize((new_width, rect_height), Image.LANCZOS)
|
20 |
-
|
21 |
-
# Apply diagonal scaling
|
22 |
new_width_scaled = int(new_width * scaling_factor)
|
23 |
new_height_scaled = int(rect_height * scaling_factor)
|
24 |
cover_resized_scaled = cover_resized.resize((new_width_scaled, new_height_scaled), Image.LANCZOS)
|
25 |
-
|
26 |
-
# Positioning the resized cover image on the template
|
27 |
left_x = int(template_img.width * 0.085)
|
28 |
left_y = int((template_img.height - new_height_scaled) // 2 + template_img.height * 0.012)
|
29 |
left_position = (left_x, left_y)
|
30 |
-
|
31 |
right_x = int(template_img.width * 0.82) - new_width_scaled
|
32 |
right_y = left_y
|
33 |
right_position = (right_x, right_y)
|
34 |
-
|
35 |
-
# Create a copy of the template to paste on
|
36 |
template_copy = template_img.copy()
|
37 |
-
|
38 |
-
# Paste the resized and scaled cover image
|
39 |
template_copy.paste(cover_resized_scaled, left_position)
|
40 |
template_copy.paste(cover_resized_scaled, right_position)
|
41 |
|
@@ -44,11 +47,10 @@ def create_cereal_box(input_image):
|
|
44 |
|
45 |
return template_copy_array
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
chained_iface = gr.Interface(create_cereal_box, inputs=iface.outputs, outputs="image")
|
52 |
|
53 |
-
#
|
54 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
|
|
3 |
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
|
7 |
+
# Initialize the DiffusionPipeline model with LoRA weights
|
8 |
+
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
9 |
+
pipeline.load_lora_weights("ostris/super-cereal-sdxl-lora")
|
10 |
+
|
11 |
+
def text_to_image(prompt):
|
12 |
+
# Generate image using the DiffusionPipeline
|
13 |
+
output = pipeline(prompt)
|
14 |
+
generated_img_tensor = output.images[0]
|
15 |
+
|
16 |
+
# Convert torch tensor to numpy array
|
17 |
+
generated_img_array = generated_img_tensor.cpu().numpy().transpose((1, 2, 0))
|
18 |
+
return generated_img_array
|
19 |
|
20 |
def create_cereal_box(input_image):
|
21 |
# Convert the input numpy array to PIL Image
|
22 |
cover_img = Image.fromarray((input_image.astype(np.uint8)))
|
23 |
|
24 |
# Load the template image
|
25 |
+
template_img = Image.open('CerealBoxMaker/template.jpeg') # Replace with your actual path
|
26 |
|
27 |
+
# Simplified cereal box creation logic
|
28 |
scaling_factor = 1.5
|
|
|
|
|
29 |
rect_height = int(template_img.height * 0.32)
|
30 |
new_width = int(rect_height * 0.70)
|
31 |
cover_resized = cover_img.resize((new_width, rect_height), Image.LANCZOS)
|
|
|
|
|
32 |
new_width_scaled = int(new_width * scaling_factor)
|
33 |
new_height_scaled = int(rect_height * scaling_factor)
|
34 |
cover_resized_scaled = cover_resized.resize((new_width_scaled, new_height_scaled), Image.LANCZOS)
|
|
|
|
|
35 |
left_x = int(template_img.width * 0.085)
|
36 |
left_y = int((template_img.height - new_height_scaled) // 2 + template_img.height * 0.012)
|
37 |
left_position = (left_x, left_y)
|
|
|
38 |
right_x = int(template_img.width * 0.82) - new_width_scaled
|
39 |
right_y = left_y
|
40 |
right_position = (right_x, right_y)
|
|
|
|
|
41 |
template_copy = template_img.copy()
|
|
|
|
|
42 |
template_copy.paste(cover_resized_scaled, left_position)
|
43 |
template_copy.paste(cover_resized_scaled, right_position)
|
44 |
|
|
|
47 |
|
48 |
return template_copy_array
|
49 |
|
50 |
+
def combined_function(prompt):
|
51 |
+
generated_img_array = text_to_image(prompt)
|
52 |
+
final_img = create_cereal_box(generated_img_array)
|
53 |
+
return final_img
|
|
|
54 |
|
55 |
+
# Create a Gradio Interface
|
56 |
+
gr.Interface(fn=combined_function, inputs="text", outputs="image").launch()
|