Spaces:
Paused
Paused
| import logging | |
| import os | |
| import uuid | |
| from typing import Optional, Union | |
| import asyncio | |
| import requests | |
| from huggingface_hub import snapshot_download | |
| from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever | |
| from langchain_community.retrievers import BM25Retriever | |
| from langchain_core.documents import Document | |
| from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT | |
| from open_webui.utils.misc import get_last_user_message | |
| from open_webui.env import SRC_LOG_LEVELS | |
| from open_webui.config import DEFAULT_RAG_TEMPLATE | |
| log = logging.getLogger(__name__) | |
| log.setLevel(SRC_LOG_LEVELS["RAG"]) | |
| from typing import Any | |
| from langchain_core.callbacks import CallbackManagerForRetrieverRun | |
| from langchain_core.retrievers import BaseRetriever | |
| class VectorSearchRetriever(BaseRetriever): | |
| collection_name: Any | |
| embedding_function: Any | |
| top_k: int | |
| def _get_relevant_documents( | |
| self, | |
| query: str, | |
| *, | |
| run_manager: CallbackManagerForRetrieverRun, | |
| ) -> list[Document]: | |
| result = VECTOR_DB_CLIENT.search( | |
| collection_name=self.collection_name, | |
| vectors=[self.embedding_function(query)], | |
| limit=self.top_k, | |
| ) | |
| ids = result.ids[0] | |
| metadatas = result.metadatas[0] | |
| documents = result.documents[0] | |
| results = [] | |
| for idx in range(len(ids)): | |
| results.append( | |
| Document( | |
| metadata=metadatas[idx], | |
| page_content=documents[idx], | |
| ) | |
| ) | |
| return results | |
| def query_doc( | |
| collection_name: str, | |
| query_embedding: list[float], | |
| k: int, | |
| ): | |
| try: | |
| result = VECTOR_DB_CLIENT.search( | |
| collection_name=collection_name, | |
| vectors=[query_embedding], | |
| limit=k, | |
| ) | |
| log.info(f"query_doc:result {result.ids} {result.metadatas}") | |
| return result | |
| except Exception as e: | |
| print(e) | |
| raise e | |
| def query_doc_with_hybrid_search( | |
| collection_name: str, | |
| query: str, | |
| embedding_function, | |
| k: int, | |
| reranking_function, | |
| r: float, | |
| ) -> dict: | |
| try: | |
| result = VECTOR_DB_CLIENT.get(collection_name=collection_name) | |
| bm25_retriever = BM25Retriever.from_texts( | |
| texts=result.documents[0], | |
| metadatas=result.metadatas[0], | |
| ) | |
| bm25_retriever.k = k | |
| vector_search_retriever = VectorSearchRetriever( | |
| collection_name=collection_name, | |
| embedding_function=embedding_function, | |
| top_k=k, | |
| ) | |
| ensemble_retriever = EnsembleRetriever( | |
| retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5] | |
| ) | |
| compressor = RerankCompressor( | |
| embedding_function=embedding_function, | |
| top_n=k, | |
| reranking_function=reranking_function, | |
| r_score=r, | |
| ) | |
| compression_retriever = ContextualCompressionRetriever( | |
| base_compressor=compressor, base_retriever=ensemble_retriever | |
| ) | |
| result = compression_retriever.invoke(query) | |
| result = { | |
| "distances": [[d.metadata.get("score") for d in result]], | |
| "documents": [[d.page_content for d in result]], | |
| "metadatas": [[d.metadata for d in result]], | |
| } | |
| log.info( | |
| "query_doc_with_hybrid_search:result " | |
| + f'{result["metadatas"]} {result["distances"]}' | |
| ) | |
| return result | |
| except Exception as e: | |
| raise e | |
| def merge_and_sort_query_results( | |
| query_results: list[dict], k: int, reverse: bool = False | |
| ) -> list[dict]: | |
| # Initialize lists to store combined data | |
| combined_distances = [] | |
| combined_documents = [] | |
| combined_metadatas = [] | |
| for data in query_results: | |
| combined_distances.extend(data["distances"][0]) | |
| combined_documents.extend(data["documents"][0]) | |
| combined_metadatas.extend(data["metadatas"][0]) | |
| # Create a list of tuples (distance, document, metadata) | |
| combined = list(zip(combined_distances, combined_documents, combined_metadatas)) | |
| # Sort the list based on distances | |
| combined.sort(key=lambda x: x[0], reverse=reverse) | |
| # We don't have anything :-( | |
| if not combined: | |
| sorted_distances = [] | |
| sorted_documents = [] | |
| sorted_metadatas = [] | |
| else: | |
| # Unzip the sorted list | |
| sorted_distances, sorted_documents, sorted_metadatas = zip(*combined) | |
| # Slicing the lists to include only k elements | |
| sorted_distances = list(sorted_distances)[:k] | |
| sorted_documents = list(sorted_documents)[:k] | |
| sorted_metadatas = list(sorted_metadatas)[:k] | |
| # Create the output dictionary | |
| result = { | |
| "distances": [sorted_distances], | |
| "documents": [sorted_documents], | |
| "metadatas": [sorted_metadatas], | |
| } | |
| return result | |
| def query_collection( | |
| collection_names: list[str], | |
| queries: list[str], | |
| embedding_function, | |
| k: int, | |
| ) -> dict: | |
| results = [] | |
| for query in queries: | |
| query_embedding = embedding_function(query) | |
| for collection_name in collection_names: | |
| if collection_name: | |
| try: | |
| result = query_doc( | |
| collection_name=collection_name, | |
| k=k, | |
| query_embedding=query_embedding, | |
| ) | |
| if result is not None: | |
| results.append(result.model_dump()) | |
| except Exception as e: | |
| log.exception(f"Error when querying the collection: {e}") | |
| else: | |
| pass | |
| return merge_and_sort_query_results(results, k=k) | |
| def query_collection_with_hybrid_search( | |
| collection_names: list[str], | |
| queries: list[str], | |
| embedding_function, | |
| k: int, | |
| reranking_function, | |
| r: float, | |
| ) -> dict: | |
| results = [] | |
| error = False | |
| for collection_name in collection_names: | |
| try: | |
| for query in queries: | |
| result = query_doc_with_hybrid_search( | |
| collection_name=collection_name, | |
| query=query, | |
| embedding_function=embedding_function, | |
| k=k, | |
| reranking_function=reranking_function, | |
| r=r, | |
| ) | |
| results.append(result) | |
| except Exception as e: | |
| log.exception( | |
| "Error when querying the collection with " f"hybrid_search: {e}" | |
| ) | |
| error = True | |
| if error: | |
| raise Exception( | |
| "Hybrid search failed for all collections. Using Non hybrid search as fallback." | |
| ) | |
| return merge_and_sort_query_results(results, k=k, reverse=True) | |
| def rag_template(template: str, context: str, query: str): | |
| if template == "": | |
| template = DEFAULT_RAG_TEMPLATE | |
| if "[context]" not in template and "{{CONTEXT}}" not in template: | |
| log.debug( | |
| "WARNING: The RAG template does not contain the '[context]' or '{{CONTEXT}}' placeholder." | |
| ) | |
| if "<context>" in context and "</context>" in context: | |
| log.debug( | |
| "WARNING: Potential prompt injection attack: the RAG " | |
| "context contains '<context>' and '</context>'. This might be " | |
| "nothing, or the user might be trying to hack something." | |
| ) | |
| query_placeholders = [] | |
| if "[query]" in context: | |
| query_placeholder = "{{QUERY" + str(uuid.uuid4()) + "}}" | |
| template = template.replace("[query]", query_placeholder) | |
| query_placeholders.append(query_placeholder) | |
| if "{{QUERY}}" in context: | |
| query_placeholder = "{{QUERY" + str(uuid.uuid4()) + "}}" | |
| template = template.replace("{{QUERY}}", query_placeholder) | |
| query_placeholders.append(query_placeholder) | |
| template = template.replace("[context]", context) | |
| template = template.replace("{{CONTEXT}}", context) | |
| template = template.replace("[query]", query) | |
| template = template.replace("{{QUERY}}", query) | |
| for query_placeholder in query_placeholders: | |
| template = template.replace(query_placeholder, query) | |
| return template | |
| def get_embedding_function( | |
| embedding_engine, | |
| embedding_model, | |
| embedding_function, | |
| url, | |
| key, | |
| embedding_batch_size, | |
| ): | |
| if embedding_engine == "": | |
| return lambda query: embedding_function.encode(query).tolist() | |
| elif embedding_engine in ["ollama", "openai"]: | |
| func = lambda query: generate_embeddings( | |
| engine=embedding_engine, | |
| model=embedding_model, | |
| text=query, | |
| url=url, | |
| key=key, | |
| ) | |
| def generate_multiple(query, func): | |
| if isinstance(query, list): | |
| embeddings = [] | |
| for i in range(0, len(query), embedding_batch_size): | |
| embeddings.extend(func(query[i : i + embedding_batch_size])) | |
| return embeddings | |
| else: | |
| return func(query) | |
| return lambda query: generate_multiple(query, func) | |
| def get_sources_from_files( | |
| files, | |
| queries, | |
| embedding_function, | |
| k, | |
| reranking_function, | |
| r, | |
| hybrid_search, | |
| ): | |
| log.debug(f"files: {files} {queries} {embedding_function} {reranking_function}") | |
| extracted_collections = [] | |
| relevant_contexts = [] | |
| for file in files: | |
| if file.get("context") == "full": | |
| context = { | |
| "documents": [[file.get("file").get("data", {}).get("content")]], | |
| "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]], | |
| } | |
| else: | |
| context = None | |
| collection_names = [] | |
| if file.get("type") == "collection": | |
| if file.get("legacy"): | |
| collection_names = file.get("collection_names", []) | |
| else: | |
| collection_names.append(file["id"]) | |
| elif file.get("collection_name"): | |
| collection_names.append(file["collection_name"]) | |
| elif file.get("id"): | |
| if file.get("legacy"): | |
| collection_names.append(f"{file['id']}") | |
| else: | |
| collection_names.append(f"file-{file['id']}") | |
| collection_names = set(collection_names).difference(extracted_collections) | |
| if not collection_names: | |
| log.debug(f"skipping {file} as it has already been extracted") | |
| continue | |
| try: | |
| context = None | |
| if file.get("type") == "text": | |
| context = file["content"] | |
| else: | |
| if hybrid_search: | |
| try: | |
| context = query_collection_with_hybrid_search( | |
| collection_names=collection_names, | |
| queries=queries, | |
| embedding_function=embedding_function, | |
| k=k, | |
| reranking_function=reranking_function, | |
| r=r, | |
| ) | |
| except Exception as e: | |
| log.debug( | |
| "Error when using hybrid search, using" | |
| " non hybrid search as fallback." | |
| ) | |
| if (not hybrid_search) or (context is None): | |
| context = query_collection( | |
| collection_names=collection_names, | |
| queries=queries, | |
| embedding_function=embedding_function, | |
| k=k, | |
| ) | |
| except Exception as e: | |
| log.exception(e) | |
| extracted_collections.extend(collection_names) | |
| if context: | |
| if "data" in file: | |
| del file["data"] | |
| relevant_contexts.append({**context, "file": file}) | |
| sources = [] | |
| for context in relevant_contexts: | |
| try: | |
| if "documents" in context: | |
| if "metadatas" in context: | |
| source = { | |
| "source": context["file"], | |
| "document": context["documents"][0], | |
| "metadata": context["metadatas"][0], | |
| } | |
| if "distances" in context and context["distances"]: | |
| source["distances"] = context["distances"][0] | |
| sources.append(source) | |
| except Exception as e: | |
| log.exception(e) | |
| return sources | |
| def get_model_path(model: str, update_model: bool = False): | |
| # Construct huggingface_hub kwargs with local_files_only to return the snapshot path | |
| cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME") | |
| local_files_only = not update_model | |
| snapshot_kwargs = { | |
| "cache_dir": cache_dir, | |
| "local_files_only": local_files_only, | |
| } | |
| log.debug(f"model: {model}") | |
| log.debug(f"snapshot_kwargs: {snapshot_kwargs}") | |
| # Inspiration from upstream sentence_transformers | |
| if ( | |
| os.path.exists(model) | |
| or ("\\" in model or model.count("/") > 1) | |
| and local_files_only | |
| ): | |
| # If fully qualified path exists, return input, else set repo_id | |
| return model | |
| elif "/" not in model: | |
| # Set valid repo_id for model short-name | |
| model = "sentence-transformers" + "/" + model | |
| snapshot_kwargs["repo_id"] = model | |
| # Attempt to query the huggingface_hub library to determine the local path and/or to update | |
| try: | |
| model_repo_path = snapshot_download(**snapshot_kwargs) | |
| log.debug(f"model_repo_path: {model_repo_path}") | |
| return model_repo_path | |
| except Exception as e: | |
| log.exception(f"Cannot determine model snapshot path: {e}") | |
| return model | |
| def generate_openai_batch_embeddings( | |
| model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = "" | |
| ) -> Optional[list[list[float]]]: | |
| try: | |
| r = requests.post( | |
| f"{url}/embeddings", | |
| headers={ | |
| "Content-Type": "application/json", | |
| "Authorization": f"Bearer {key}", | |
| }, | |
| json={"input": texts, "model": model}, | |
| ) | |
| r.raise_for_status() | |
| data = r.json() | |
| if "data" in data: | |
| return [elem["embedding"] for elem in data["data"]] | |
| else: | |
| raise "Something went wrong :/" | |
| except Exception as e: | |
| print(e) | |
| return None | |
| def generate_ollama_batch_embeddings( | |
| model: str, texts: list[str], url: str, key: str | |
| ) -> Optional[list[list[float]]]: | |
| try: | |
| r = requests.post( | |
| f"{url}/api/embed", | |
| headers={ | |
| "Content-Type": "application/json", | |
| "Authorization": f"Bearer {key}", | |
| }, | |
| json={"input": texts, "model": model}, | |
| ) | |
| r.raise_for_status() | |
| data = r.json() | |
| if "embeddings" in data: | |
| return data["embeddings"] | |
| else: | |
| raise "Something went wrong :/" | |
| except Exception as e: | |
| print(e) | |
| return None | |
| def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs): | |
| url = kwargs.get("url", "") | |
| key = kwargs.get("key", "") | |
| if engine == "ollama": | |
| if isinstance(text, list): | |
| embeddings = generate_ollama_batch_embeddings( | |
| **{"model": model, "texts": text, "url": url, "key": key} | |
| ) | |
| else: | |
| embeddings = generate_ollama_batch_embeddings( | |
| **{"model": model, "texts": [text], "url": url, "key": key} | |
| ) | |
| return embeddings[0] if isinstance(text, str) else embeddings | |
| elif engine == "openai": | |
| if isinstance(text, list): | |
| embeddings = generate_openai_batch_embeddings(model, text, url, key) | |
| else: | |
| embeddings = generate_openai_batch_embeddings(model, [text], url, key) | |
| return embeddings[0] if isinstance(text, str) else embeddings | |
| import operator | |
| from typing import Optional, Sequence | |
| from langchain_core.callbacks import Callbacks | |
| from langchain_core.documents import BaseDocumentCompressor, Document | |
| class RerankCompressor(BaseDocumentCompressor): | |
| embedding_function: Any | |
| top_n: int | |
| reranking_function: Any | |
| r_score: float | |
| class Config: | |
| extra = "forbid" | |
| arbitrary_types_allowed = True | |
| def compress_documents( | |
| self, | |
| documents: Sequence[Document], | |
| query: str, | |
| callbacks: Optional[Callbacks] = None, | |
| ) -> Sequence[Document]: | |
| reranking = self.reranking_function is not None | |
| if reranking: | |
| scores = self.reranking_function.predict( | |
| [(query, doc.page_content) for doc in documents] | |
| ) | |
| else: | |
| from sentence_transformers import util | |
| query_embedding = self.embedding_function(query) | |
| document_embedding = self.embedding_function( | |
| [doc.page_content for doc in documents] | |
| ) | |
| scores = util.cos_sim(query_embedding, document_embedding)[0] | |
| docs_with_scores = list(zip(documents, scores.tolist())) | |
| if self.r_score: | |
| docs_with_scores = [ | |
| (d, s) for d, s in docs_with_scores if s >= self.r_score | |
| ] | |
| result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True) | |
| final_results = [] | |
| for doc, doc_score in result[: self.top_n]: | |
| metadata = doc.metadata | |
| metadata["score"] = doc_score | |
| doc = Document( | |
| page_content=doc.page_content, | |
| metadata=metadata, | |
| ) | |
| final_results.append(doc) | |
| return final_results | |