Spaces:
Running
on
Zero
Running
on
Zero
# This file is modified version from the original convnext | |
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class Block(nn.Module): | |
r""" ConvNeXt Block. There are two equivalent implementations: | |
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
We use (2) as we find it slightly faster in PyTorch | |
Args: | |
dim (int): Number of input channels. | |
drop_path (float): Stochastic depth rate. Default: 0.0 | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
""" | |
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): | |
super().__init__() | |
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv | |
self.norm = LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(4 * dim, dim) | |
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), | |
requires_grad=True) if layer_scale_init_value > 0 else None | |
self.drop_path = nn.Identity() | |
def forward(self, x): | |
input = x | |
x = self.dwconv(x) | |
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
x = input + self.drop_path(x) | |
return x | |
# @BACKBONES.register_module() | |
class ConvNeXt(nn.Module): | |
r""" ConvNeXt | |
A PyTorch impl of : `A ConvNet for the 2020s` - | |
https://arxiv.org/pdf/2201.03545.pdf | |
Args: | |
in_chans (int): Number of input image channels. Default: 3 | |
num_classes (int): Number of classes for classification head. Default: 1000 | |
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] | |
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] | |
drop_path_rate (float): Stochastic depth rate. Default: 0. | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. | |
""" | |
def __init__(self, in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], | |
drop_path_rate=0., layer_scale_init_value=1e-6, out_indices=[0, 1, 2, 3], use_checkpoint=False | |
): | |
super().__init__() | |
self.use_checkpoint = use_checkpoint | |
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers | |
stem = nn.Sequential( | |
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), | |
LayerNorm(dims[0], eps=1e-6, data_format="channels_first") | |
) | |
self.downsample_layers.append(stem) | |
for i in range(3): | |
downsample_layer = nn.Sequential( | |
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), | |
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), | |
) | |
self.downsample_layers.append(downsample_layer) | |
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks | |
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] | |
cur = 0 | |
for i in range(4): | |
stage = nn.Sequential( | |
*[Block(dim=dims[i], drop_path=dp_rates[cur + j], | |
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] | |
) | |
self.stages.append(stage) | |
cur += depths[i] | |
self.out_indices = out_indices | |
norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first") | |
for i_layer in range(4): | |
layer = norm_layer(dims[i_layer]) | |
layer_name = f'norm{i_layer}' | |
self.add_module(layer_name, layer) | |
def forward_features(self, x): | |
outs = [] | |
for i in range(4): | |
x = self.downsample_layers[i](x) | |
x = self.stages[i](x) | |
if i in self.out_indices: | |
norm_layer = getattr(self, f'norm{i}') | |
x_out = norm_layer(x) | |
outs.append(x_out) | |
return tuple(outs) | |
def forward(self, x): | |
x = self.forward_features(x) | |
return x | |
class LayerNorm(nn.Module): | |
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
with shape (batch_size, channels, height, width). | |
""" | |
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.data_format = data_format | |
if self.data_format not in ["channels_last", "channels_first"]: | |
raise NotImplementedError | |
self.normalized_shape = (normalized_shape, ) | |
def forward(self, x): | |
if self.data_format == "channels_last": | |
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |
elif self.data_format == "channels_first": | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |