Spaces:
Running
on
Zero
Running
on
Zero
from typing import Tuple | |
import torch | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ..utils.model_utils import * | |
from ..utils import transformer | |
from ..utils.ind2sub import * | |
from ..utils.decompose_tensors import * | |
from ..utils.utils import * | |
from einops import rearrange | |
from ..aggregator import Aggregator | |
import pywt | |
def create_wavelet_filter(wave, in_size, out_size, type=torch.float): | |
w = pywt.Wavelet(wave) | |
dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type) | |
dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type) | |
dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1), | |
dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1), | |
dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1), | |
dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0) | |
dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1) | |
rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0]) | |
rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0]) | |
rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1), | |
rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1), | |
rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1), | |
rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0) | |
rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1) | |
return dec_filters, rec_filters | |
def wavelet_transform(x, filters): | |
b, c, h, w = x.shape | |
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1) | |
x = F.conv2d(x, filters, stride=2, groups=c, padding=pad) | |
x = x.reshape(b, c, 4, h // 2, w // 2) | |
return x | |
def inverse_wavelet_transform(x, filters): | |
b, c, _, h_half, w_half = x.shape | |
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1) | |
x = x.reshape(b, c * 4, h_half, w_half) | |
x = F.conv_transpose2d(x, filters, stride=2, groups=c, padding=pad) | |
return x | |
class ResidualConvUnit(nn.Module): | |
"""Residual convolution module.""" | |
def __init__(self, features, activation, bn, groups=1): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super().__init__() | |
self.bn = bn | |
self.groups = groups | |
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) | |
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) | |
self.norm1 = None | |
self.norm2 = None | |
self.activation = activation | |
self.skip_add = nn.quantized.FloatFunctional() | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: output | |
""" | |
out = self.activation(x) | |
out = self.conv1(out) | |
if self.norm1 is not None: | |
out = self.norm1(out) | |
out = self.activation(out) | |
out = self.conv2(out) | |
if self.norm2 is not None: | |
out = self.norm2(out) | |
return self.skip_add.add(out, x) | |
class FeatureFusionBlock(nn.Module): | |
"""Feature fusion block.""" | |
def __init__( | |
self, | |
features, | |
activation, | |
deconv=False, | |
bn=False, | |
expand=False, | |
align_corners=True, | |
size=None, | |
has_residual=True, | |
groups=1, | |
): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super(FeatureFusionBlock, self).__init__() | |
self.deconv = deconv | |
self.align_corners = align_corners | |
self.groups = groups | |
self.expand = expand | |
out_features = features | |
if self.expand == True: | |
out_features = features // 2 | |
self.out_conv = nn.Conv2d( | |
features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=self.groups | |
) | |
if has_residual: | |
self.resConfUnit1 = ResidualConvUnit(features, activation, bn, groups=self.groups) | |
self.has_residual = has_residual | |
self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=self.groups) | |
self.skip_add = nn.quantized.FloatFunctional() | |
self.size = size | |
def forward(self, *xs, size=None): | |
"""Forward pass. | |
Returns: | |
tensor: output | |
""" | |
output = xs[0] | |
if self.has_residual: | |
res = self.resConfUnit1(xs[1]) | |
output = self.skip_add.add(output, res) | |
output = self.resConfUnit2(output) | |
if (size is None) and (self.size is None): | |
modifier = {"scale_factor": 2} | |
elif size is None: | |
modifier = {"size": self.size} | |
else: | |
modifier = {"size": size} | |
output = custom_interpolate(output.float(), **modifier, mode="bilinear", align_corners=self.align_corners).to(torch.bfloat16) | |
output = self.out_conv(output) | |
return output | |
def custom_interpolate( | |
x: torch.Tensor, | |
size: Tuple[int, int] = None, | |
scale_factor: float = None, | |
mode: str = "bilinear", | |
align_corners: bool = True, | |
) -> torch.Tensor: | |
""" | |
Custom interpolate to avoid INT_MAX issues in nn.functional.interpolate. | |
""" | |
if size is None: | |
size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor)) | |
INT_MAX = 1610612736 | |
input_elements = size[0] * size[1] * x.shape[0] * x.shape[1] | |
if input_elements > INT_MAX: | |
chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0) | |
interpolated_chunks = [ | |
nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks | |
] | |
x = torch.cat(interpolated_chunks, dim=0) | |
return x.contiguous() | |
else: | |
return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners) | |
def _make_scratch(in_shape, out_shape: int, groups: int = 1, expand: bool = False) -> nn.Module: | |
""" | |
""" | |
scratch = nn.Module() | |
activation_function = nn.LeakyReLU | |
out_shape1 = out_shape | |
out_shape2 = out_shape | |
out_shape3 = out_shape | |
if len(in_shape) >= 4: | |
out_shape4 = out_shape | |
if expand: | |
out_shape1 = out_shape | |
out_shape2 = out_shape * 2 | |
out_shape3 = out_shape * 4 | |
if len(in_shape) >= 4: | |
out_shape4 = out_shape * 8 | |
scratch.layer1_rn = nn.Sequential( | |
nn.Conv2d( | |
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
), | |
activation_function() | |
) | |
scratch.layer2_rn = nn.Sequential( | |
nn.Conv2d( | |
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
), | |
activation_function() | |
) | |
scratch.layer3_rn = nn.Sequential( | |
nn.Conv2d( | |
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
), | |
activation_function() | |
) | |
if len(in_shape) >= 4: | |
scratch.layer4_rn = nn.Sequential( | |
nn.Conv2d( | |
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
), | |
activation_function() | |
) | |
return scratch | |
def _make_fusion_block(features: int, size: int = None, has_residual: bool = True, groups: int = 1) -> nn.Module: | |
return FeatureFusionBlock( | |
features, | |
nn.LeakyReLU(inplace=False), | |
deconv=False, | |
bn=False, | |
expand=False, | |
align_corners=True, | |
size=size, | |
has_residual=has_residual, | |
groups=groups, | |
) | |
class ImageFeatureExtractor(nn.Module): | |
def __init__(self, depth=4,img_size=256, patch_size=8, embed_dim=384): | |
super(ImageFeatureExtractor, self).__init__() | |
self.aggregator = Aggregator(img_size, patch_size, embed_dim,depth=depth,patch_embed="dinov2_vits14_reg") | |
def forward(self, x, nImgArray): | |
feat_list, normal_patch_start_idx = self.aggregator(x) | |
return torch.stack(feat_list,dim=0).permute(1,2,0,3,4).flatten(0,1),normal_patch_start_idx | |
class ImageFeatureFusion(nn.Module): | |
def __init__(self, | |
in_channels, | |
use_efficient_attention=False, | |
out_channels = [256, 512, 1024, 1024], | |
features = 256, | |
): | |
super(ImageFeatureFusion, self).__init__() | |
_, self.iwt_filter = create_wavelet_filter('db1', 384, 384, torch.bfloat16) | |
self.pixel_shuffle = nn.PixelShuffle(2) | |
self.norm = nn.LayerNorm(in_channels) | |
self.projects = nn.ModuleList( | |
[ | |
nn.Sequential( | |
nn.Conv2d( | |
in_channels=in_channels // 4, | |
out_channels=oc, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=True | |
), | |
nn.LeakyReLU() | |
) | |
for oc in out_channels | |
] | |
) | |
self.resize_layers = nn.ModuleList( | |
[ | |
nn.Sequential( | |
nn.ConvTranspose2d( | |
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=2, stride=2, padding=0 | |
), | |
nn.LeakyReLU(), | |
nn.ConvTranspose2d( | |
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=2, stride=2, padding=0 | |
), | |
nn.LeakyReLU() | |
), | |
nn.Sequential( | |
nn.ConvTranspose2d( | |
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0 | |
), | |
nn.LeakyReLU() | |
), | |
nn.Sequential( | |
nn.Conv2d( | |
in_channels=out_channels[2], out_channels=out_channels[2], kernel_size=1, stride=1, padding=0 | |
), | |
nn.LeakyReLU() | |
), | |
nn.Sequential( | |
nn.Conv2d( | |
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=2, stride=2, padding=0 | |
), | |
nn.LeakyReLU() | |
) | |
] | |
) | |
self.scratch = _make_scratch( | |
out_channels, | |
features, | |
expand=False, | |
) | |
self.scratch.stem_transpose = None | |
self.scratch.refinenet1 = _make_fusion_block(features) | |
self.scratch.refinenet2 = _make_fusion_block(features) | |
self.scratch.refinenet3 = _make_fusion_block(features) | |
self.scratch.refinenet4 = _make_fusion_block(features, has_residual=False) | |
head_features_1 = features | |
self.scratch.output_conv1 = nn.Conv2d( | |
head_features_1, head_features_1 , kernel_size=3, stride=2, padding=1 | |
) | |
def _apply_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor: | |
""" | |
Apply positional embedding to tensor x. | |
""" | |
patch_w = x.shape[-1] | |
patch_h = x.shape[-2] | |
pos_embed = create_uv_grid(patch_w, patch_h, aspect_ratio=W / H, dtype=x.dtype, device=x.device) | |
pos_embed = position_grid_to_embed(pos_embed, x.shape[1]) | |
pos_embed = pos_embed * ratio | |
pos_embed = pos_embed.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1) | |
return x + pos_embed | |
def scratch_forward(self, features) -> torch.Tensor: | |
""" | |
Forward pass through the fusion blocks. | |
Args: | |
features (List[Tensor]): List of feature maps from different layers. | |
Returns: | |
Tensor: Fused feature map. | |
""" | |
layer_1, layer_2, layer_3, layer_4 = features | |
layer_1_rn = self.scratch.layer1_rn(layer_1) | |
layer_2_rn = self.scratch.layer2_rn(layer_2) | |
layer_3_rn = self.scratch.layer3_rn(layer_3) | |
layer_4_rn = self.scratch.layer4_rn(layer_4) | |
out = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) | |
del layer_4_rn, layer_4 | |
out = self.scratch.refinenet3(out, layer_3_rn, size=layer_2_rn.shape[2:]) | |
del layer_3_rn, layer_3 | |
out = self.scratch.refinenet2(out, layer_2_rn, size=layer_1_rn.shape[2:]) | |
del layer_2_rn, layer_2 | |
out = self.scratch.refinenet1(out, layer_1_rn) | |
del layer_1_rn, layer_1 | |
out = self.scratch.output_conv1(out) | |
return out | |
def forward(self, | |
glc: torch.Tensor, | |
nImgArray: torch.Tensor, | |
chunk_size: int = 6 | |
) -> torch.Tensor: | |
B = glc.shape[0] | |
# 如果不需要分块(总批次大小小于或等于块大小),则直接调用核心实现 | |
if chunk_size is None or chunk_size >= B: | |
return self._forward_impl(glc, nImgArray) | |
# 否则,进行分块处理 | |
all_outputs = [] | |
# 以 chunk_size 为步长进行循环 | |
for start_idx in range(0, B, chunk_size): | |
# 计算当前块的结束索引 | |
end_idx = min(start_idx + chunk_size, B) | |
# 从大的输入张量中切出当前要处理的小块 | |
glc_chunk = glc[start_idx:end_idx] | |
# 注意:如果 nImgArray 也与批次相关,也需要进行切片 | |
# nImgArray_chunk = nImgArray[start_idx:end_idx] | |
# 调用核心实现函数来处理这个小块 | |
chunk_output = self._forward_impl(glc_chunk, nImgArray) | |
all_outputs.append(chunk_output) | |
# 将所有小块的处理结果,沿着批次维度(dim=0)重新拼接起来 | |
final_output = torch.cat(all_outputs, dim=0) | |
return final_output | |
def _forward_impl(self, glc: torch.Tensor, nImgArray: torch.Tensor) -> torch.Tensor: | |
""" | |
这是核心实现方法,处理一个数据块(chunk)。 | |
这里的代码就是您提供的原始 forward 方法的主体。 | |
""" | |
self.iwt_filter = self.iwt_filter.to(glc.device) | |
B, layer_num, N, C = glc.shape # 这里的 B 现在是 chunk_size | |
out = [] | |
for layer in range(layer_num): | |
x = glc[:, layer, :, :] # [B, N, C] | |
x = self.norm(x) | |
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], int(N**0.5), int(N**0.5))) # [B,C,sqrt(N),sqrt(N)] | |
x = self.pixel_shuffle(x) # [B, C, H, W] -> [B, C/4, H*2, W*2] | |
x = self.projects[layer](x) | |
x = self._apply_pos_embed(x, 256, 256).to(torch.bfloat16) | |
x = self.resize_layers[layer](x) | |
out.append(x) | |
out = self.scratch_forward(out) | |
out = self._apply_pos_embed(out, 256, 256).to(torch.bfloat16) # [B, 256, 64, 64] | |
return out | |
class ScaleInvariantSpatialLightImageEncoder(nn.Module): | |
def __init__(self, input_nc, depth=4, use_efficient_attention=False): | |
super(ScaleInvariantSpatialLightImageEncoder, self).__init__() | |
out_channels = (96, 192, 384, 768) | |
self.backbone = ImageFeatureExtractor(depth=depth) | |
self.fusion = ImageFeatureFusion(in_channels=1536, use_efficient_attention=use_efficient_attention) | |
self.feat_dim = 256 | |
self.wt_filter, _ = create_wavelet_filter('db1', 3, 3, torch.bfloat16) | |
_, self.iwt_filter = create_wavelet_filter('db1', self.feat_dim, self.feat_dim, torch.bfloat16) | |
def forward(self, x, nImgArray, canonical_resolution): | |
N, C, H, W = x.shape | |
B = N//nImgArray[0] | |
mosaic_scale = H // canonical_resolution | |
K = mosaic_scale * mosaic_scale | |
self.wt_filter = self.wt_filter.to(x.device) | |
self.iwt_filter = self.iwt_filter.to(x.device) | |
""" (1a) resizing x to (Hc, Wc)""" | |
x_resized = F.interpolate(x.float(), size= (canonical_resolution, canonical_resolution), mode='bilinear', align_corners=True).to(torch.bfloat16) | |
x_resized = x_resized.view(len(nImgArray), int(nImgArray[0]), C, x_resized.shape[2], x_resized.shape[3]) | |
""" (1b) decomposing x into K x K of (Hc, Wc) non-overlapped blocks (stride)""" | |
x_wt = wavelet_transform(x, self.wt_filter).permute(0, 2, 1, 3, 4) | |
x_wt = x_wt.reshape(B,nImgArray[0],K,3,canonical_resolution,canonical_resolution).flatten(1,2).flatten(0,1) | |
x_wt = x_wt.view(len(nImgArray), K * int(nImgArray[0]), C, x_wt.shape[2], x_wt.shape[3]) | |
""" (2a) feature extraction """ | |
aggregated_tokens_list, patch_start_idx = self.backbone(x_resized,nImgArray) | |
light_tokens_resized = aggregated_tokens_list[:,:,:patch_start_idx - 4,:] | |
light_tokens_resized = rearrange(light_tokens_resized,'(B f) layer num c -> B f layer num c',B = B) | |
x = self.fusion(aggregated_tokens_list[:,:,patch_start_idx:,:], nImgArray) | |
f_resized_grid = F.interpolate(x.reshape(N, self.feat_dim, canonical_resolution, canonical_resolution).float() , size= (H, W), mode='bilinear', align_corners=True).to(torch.bfloat16) | |
""" (2b) feature extraction (grid) """ | |
aggregated_tokens_list, patch_start_idx = self.backbone(x_wt,nImgArray) | |
light_tokens_wt = aggregated_tokens_list[:,:,:patch_start_idx - 4,:] | |
light_tokens_wt = rearrange(light_tokens_wt,'(B f k) layer num c -> B f k layer num c',B = B, f=nImgArray[0]) | |
light_tokens = torch.cat((light_tokens_resized.unsqueeze(2), light_tokens_wt), dim=2) | |
x = self.fusion(aggregated_tokens_list[:,:,patch_start_idx:,:], nImgArray) | |
x = rearrange(x, '(f k) c h w -> f c k h w ',k=4) | |
x = inverse_wavelet_transform(x, self.iwt_filter) | |
""" (3) upsample """ | |
glc = (f_resized_grid + x) | |
return glc,light_tokens | |
class GLC_Upsample(nn.Module): | |
def __init__(self, input_nc, num_enc_sab=1, dim_hidden=256, dim_feedforward=1024, use_efficient_attention=False): | |
super(GLC_Upsample, self).__init__() | |
self.comm = transformer.CommunicationBlock(input_nc, num_enc_sab = num_enc_sab, dim_hidden=dim_hidden, ln=True, dim_feedforward = dim_feedforward,use_efficient_attention=False) | |
def forward(self, x): | |
x = self.comm(x) | |
return x | |
class GLC_Aggregation(nn.Module): | |
def __init__(self, input_nc, num_agg_transformer=2, dim_aggout=384, dim_feedforward=1024, use_efficient_attention=False): | |
super(GLC_Aggregation, self).__init__() | |
self.aggregation = transformer.AggregationBlock(dim_input = input_nc, num_enc_sab = num_agg_transformer, num_outputs = 1, dim_hidden=dim_aggout, dim_feedforward = dim_feedforward, num_heads=8, ln=True, attention_dropout=0.1, use_efficient_attention=use_efficient_attention) | |
def forward(self, x): | |
x = self.aggregation(x) | |
return x | |
class Regressor(nn.Module): | |
def __init__(self, input_nc, num_enc_sab=1, use_efficient_attention=False, dim_feedforward=256, output='normal'): | |
super(Regressor, self).__init__() | |
self.comm = transformer.CommunicationBlock(input_nc, num_enc_sab = num_enc_sab, dim_hidden=input_nc, ln=True, dim_feedforward = dim_feedforward, use_efficient_attention=use_efficient_attention) | |
if output == 'normal': | |
self.prediction_normal = PredictionHead(input_nc, 3, confidence=True) | |
self.target = output | |
def forward(self, x, num_sample_set): | |
"""Standard forward | |
INPUT: img [Num_Pix, F] | |
OUTPUT: [Num_Pix, 3]""" | |
if x.shape[0] % num_sample_set == 0: | |
x_ = x.reshape(-1, num_sample_set, x.shape[1]) | |
x_ = self.comm(x_) | |
x = x_.reshape(-1, x.shape[1]) | |
else: | |
ids = list(range(x.shape[0])) | |
num_split = len(ids) // num_sample_set | |
x_1 = x[:(num_split)*num_sample_set, :].reshape(-1, num_sample_set, x.shape[1]) | |
x_1 = self.comm(x_1).reshape(-1, x.shape[1]) | |
x_2 = x[(num_split)*num_sample_set:,:].reshape(1, -1, x.shape[1]) | |
x_2 = self.comm(x_2).reshape(-1, x.shape[1]) | |
x = torch.cat([x_1, x_2], dim=0) | |
if self.target == 'normal': | |
x_n, conf = self.prediction_normal(x.reshape(x.shape[0]//num_sample_set, num_sample_set, -1)) | |
x_ = [] | |
return x_n, x_, x, conf | |
class PredictionHead(nn.Module): | |
def __init__(self, dim_input, dim_output, confidence=False): | |
super(PredictionHead, self).__init__() | |
modules_regression = [] | |
modules_regression.append(nn.Linear(dim_input, dim_input//2)) | |
modules_regression.append(nn.ReLU()) | |
self.out_layer = nn.Linear(dim_input//2, dim_output) | |
if confidence: | |
self.confi_layer = nn.Linear(dim_input//2, 1) | |
self.regression = nn.Sequential(*modules_regression) | |
def forward(self, x): | |
h = self.regression(x) | |
ret = self.out_layer(h) | |
if hasattr(self, 'confi_layer'): | |
confidence = self.confi_layer(h) | |
else: | |
confidence = torch.zeros_like([ret.shape[0], 1]) | |
return ret, torch.sigmoid(confidence) | |