fp16
Browse files
app.ipynb
CHANGED
@@ -2,12 +2,22 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"id": "44eb0ad3",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
10 |
-
"
|
11 |
"from fastai.vision.all import *\n",
|
12 |
"import gradio as gr\n",
|
13 |
"\n",
|
@@ -16,7 +26,7 @@
|
|
16 |
},
|
17 |
{
|
18 |
"cell_type": "code",
|
19 |
-
"execution_count":
|
20 |
"id": "d838c0b3",
|
21 |
"metadata": {},
|
22 |
"outputs": [],
|
@@ -31,7 +41,7 @@
|
|
31 |
},
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
-
"execution_count":
|
35 |
"id": "c107f724",
|
36 |
"metadata": {},
|
37 |
"outputs": [
|
@@ -75,10 +85,10 @@
|
|
75 |
" <tbody>\n",
|
76 |
" <tr>\n",
|
77 |
" <td>0</td>\n",
|
78 |
-
" <td>0.
|
79 |
-
" <td>0.
|
80 |
-
" <td>0.
|
81 |
-
" <td>00:
|
82 |
" </tr>\n",
|
83 |
" </tbody>\n",
|
84 |
"</table>"
|
@@ -130,24 +140,24 @@
|
|
130 |
" <tbody>\n",
|
131 |
" <tr>\n",
|
132 |
" <td>0</td>\n",
|
133 |
-
" <td>0.
|
134 |
-
" <td>0.
|
135 |
-
" <td>0.
|
136 |
-
" <td>00:
|
137 |
" </tr>\n",
|
138 |
" <tr>\n",
|
139 |
" <td>1</td>\n",
|
140 |
-
" <td>0.
|
141 |
-
" <td>0.
|
142 |
-
" <td>0.
|
143 |
-
" <td>00:
|
144 |
" </tr>\n",
|
145 |
" <tr>\n",
|
146 |
" <td>2</td>\n",
|
147 |
-
" <td>0.
|
148 |
-
" <td>0.
|
149 |
-
" <td>0.
|
150 |
-
" <td>00:
|
151 |
" </tr>\n",
|
152 |
" </tbody>\n",
|
153 |
"</table>"
|
@@ -167,7 +177,158 @@
|
|
167 |
},
|
168 |
{
|
169 |
"cell_type": "code",
|
170 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
"id": "5171c7fc",
|
172 |
"metadata": {},
|
173 |
"outputs": [],
|
@@ -177,7 +338,7 @@
|
|
177 |
},
|
178 |
{
|
179 |
"cell_type": "code",
|
180 |
-
"execution_count":
|
181 |
"id": "3295ef11",
|
182 |
"metadata": {},
|
183 |
"outputs": [
|
@@ -188,7 +349,7 @@
|
|
188 |
"PILImage mode=RGB size=192x191"
|
189 |
]
|
190 |
},
|
191 |
-
"execution_count":
|
192 |
"metadata": {},
|
193 |
"output_type": "execute_result"
|
194 |
}
|
@@ -201,22 +362,20 @@
|
|
201 |
},
|
202 |
{
|
203 |
"cell_type": "code",
|
204 |
-
"execution_count":
|
205 |
"id": "ae2bc6ac",
|
206 |
"metadata": {},
|
207 |
"outputs": [],
|
208 |
"source": [
|
209 |
-
"
|
210 |
"learn = load_learner('model.pkl')"
|
211 |
]
|
212 |
},
|
213 |
{
|
214 |
"cell_type": "code",
|
215 |
-
"execution_count":
|
216 |
"id": "6e0bf9da",
|
217 |
-
"metadata": {
|
218 |
-
"scrolled": false
|
219 |
-
},
|
220 |
"outputs": [
|
221 |
{
|
222 |
"data": {
|
@@ -255,10 +414,10 @@
|
|
255 |
{
|
256 |
"data": {
|
257 |
"text/plain": [
|
258 |
-
"('False', TensorBase(0), TensorBase([9.
|
259 |
]
|
260 |
},
|
261 |
-
"execution_count":
|
262 |
"metadata": {},
|
263 |
"output_type": "execute_result"
|
264 |
}
|
@@ -269,12 +428,12 @@
|
|
269 |
},
|
270 |
{
|
271 |
"cell_type": "code",
|
272 |
-
"execution_count":
|
273 |
"id": "0419ed3a",
|
274 |
"metadata": {},
|
275 |
"outputs": [],
|
276 |
"source": [
|
277 |
-
"
|
278 |
"categories = ('Dog', 'Cat')\n",
|
279 |
"\n",
|
280 |
"def classify_image(img):\n",
|
@@ -284,7 +443,7 @@
|
|
284 |
},
|
285 |
{
|
286 |
"cell_type": "code",
|
287 |
-
"execution_count":
|
288 |
"id": "762dec00",
|
289 |
"metadata": {},
|
290 |
"outputs": [
|
@@ -325,10 +484,10 @@
|
|
325 |
{
|
326 |
"data": {
|
327 |
"text/plain": [
|
328 |
-
"{'Dog': 0.
|
329 |
]
|
330 |
},
|
331 |
-
"execution_count":
|
332 |
"metadata": {},
|
333 |
"output_type": "execute_result"
|
334 |
}
|
@@ -339,11 +498,9 @@
|
|
339 |
},
|
340 |
{
|
341 |
"cell_type": "code",
|
342 |
-
"execution_count":
|
343 |
"id": "0518a30a",
|
344 |
-
"metadata": {
|
345 |
-
"collapsed": true
|
346 |
-
},
|
347 |
"outputs": [
|
348 |
{
|
349 |
"name": "stdout",
|
@@ -354,113 +511,69 @@
|
|
354 |
"To create a public link, set `share=True` in `launch()`.\n"
|
355 |
]
|
356 |
},
|
357 |
-
{
|
358 |
-
"data": {
|
359 |
-
"text/html": [
|
360 |
-
"\n",
|
361 |
-
" <iframe\n",
|
362 |
-
" width=\"900\"\n",
|
363 |
-
" height=\"500\"\n",
|
364 |
-
" src=\"http://127.0.0.1:7860/\"\n",
|
365 |
-
" frameborder=\"0\"\n",
|
366 |
-
" allowfullscreen\n",
|
367 |
-
" \n",
|
368 |
-
" ></iframe>\n",
|
369 |
-
" "
|
370 |
-
],
|
371 |
-
"text/plain": [
|
372 |
-
"<IPython.lib.display.IFrame at 0x7f98552d6340>"
|
373 |
-
]
|
374 |
-
},
|
375 |
-
"metadata": {},
|
376 |
-
"output_type": "display_data"
|
377 |
-
},
|
378 |
{
|
379 |
"data": {
|
380 |
"text/plain": [
|
381 |
-
"(<fastapi.applications.FastAPI at
|
382 |
" 'http://127.0.0.1:7860/',\n",
|
383 |
" None)"
|
384 |
]
|
385 |
},
|
386 |
-
"execution_count":
|
387 |
"metadata": {},
|
388 |
"output_type": "execute_result"
|
389 |
}
|
390 |
],
|
391 |
"source": [
|
392 |
-
"
|
393 |
"image = gr.inputs.Image(shape=(192, 192))\n",
|
394 |
"label = gr.outputs.Label()\n",
|
395 |
"examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']\n",
|
396 |
"\n",
|
397 |
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
398 |
-
"intf.launch()"
|
399 |
]
|
400 |
},
|
401 |
{
|
402 |
-
"cell_type": "
|
403 |
-
"
|
404 |
-
"id": "103be39f",
|
405 |
"metadata": {},
|
406 |
-
"outputs": [],
|
407 |
"source": [
|
408 |
-
"
|
409 |
-
"from PIL import Image\n",
|
410 |
-
"from io import BytesIO"
|
411 |
]
|
412 |
},
|
413 |
{
|
414 |
"cell_type": "code",
|
415 |
-
"execution_count":
|
416 |
-
"id": "
|
417 |
"metadata": {},
|
418 |
"outputs": [],
|
419 |
"source": [
|
420 |
-
"
|
421 |
-
" image = PILImage.create(filename)\n",
|
422 |
-
" image.thumbnail(size)\n",
|
423 |
-
" buff = BytesIO()\n",
|
424 |
-
" image.save(buff, format=\"JPEG\")\n",
|
425 |
-
" prefix = f'data:image/{Path(filename).suffix[1:]};base64,'\n",
|
426 |
-
" return prefix + base64.b64encode(buff.getvalue()).decode('utf-8')"
|
427 |
]
|
428 |
},
|
429 |
{
|
430 |
"cell_type": "code",
|
431 |
-
"execution_count":
|
432 |
-
"id": "
|
433 |
-
"metadata": {
|
434 |
-
"scrolled": true
|
435 |
-
},
|
436 |
"outputs": [
|
437 |
{
|
438 |
-
"
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
" 'flag_index': None,\n",
|
444 |
-
" 'updated_state': None,\n",
|
445 |
-
" 'durations': [0.0977640151977539],\n",
|
446 |
-
" 'avg_durations': [0.0977640151977539]}"
|
447 |
-
]
|
448 |
-
},
|
449 |
-
"execution_count": 13,
|
450 |
-
"metadata": {},
|
451 |
-
"output_type": "execute_result"
|
452 |
}
|
453 |
],
|
454 |
"source": [
|
455 |
-
"
|
456 |
-
"res = requests.post(url='https://hf.space/embed/jph00/testing/+/api/predict/', json=data).json()\n",
|
457 |
-
"res"
|
458 |
]
|
459 |
},
|
460 |
{
|
461 |
"cell_type": "code",
|
462 |
"execution_count": null,
|
463 |
-
"id": "
|
464 |
"metadata": {},
|
465 |
"outputs": [],
|
466 |
"source": []
|
@@ -471,31 +584,6 @@
|
|
471 |
"display_name": "Python 3 (ipykernel)",
|
472 |
"language": "python",
|
473 |
"name": "python3"
|
474 |
-
},
|
475 |
-
"language_info": {
|
476 |
-
"codemirror_mode": {
|
477 |
-
"name": "ipython",
|
478 |
-
"version": 3
|
479 |
-
},
|
480 |
-
"file_extension": ".py",
|
481 |
-
"mimetype": "text/x-python",
|
482 |
-
"name": "python",
|
483 |
-
"nbconvert_exporter": "python",
|
484 |
-
"pygments_lexer": "ipython3",
|
485 |
-
"version": "3.9.5"
|
486 |
-
},
|
487 |
-
"toc": {
|
488 |
-
"base_numbering": 1,
|
489 |
-
"nav_menu": {},
|
490 |
-
"number_sections": false,
|
491 |
-
"sideBar": true,
|
492 |
-
"skip_h1_title": false,
|
493 |
-
"title_cell": "Table of Contents",
|
494 |
-
"title_sidebar": "Contents",
|
495 |
-
"toc_cell": false,
|
496 |
-
"toc_position": {},
|
497 |
-
"toc_section_display": true,
|
498 |
-
"toc_window_display": false
|
499 |
}
|
500 |
},
|
501 |
"nbformat": 4,
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "18acb717",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"#|default_exp app"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
"id": "44eb0ad3",
|
17 |
"metadata": {},
|
18 |
"outputs": [],
|
19 |
"source": [
|
20 |
+
"#|export\n",
|
21 |
"from fastai.vision.all import *\n",
|
22 |
"import gradio as gr\n",
|
23 |
"\n",
|
|
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
+
"execution_count": null,
|
30 |
"id": "d838c0b3",
|
31 |
"metadata": {},
|
32 |
"outputs": [],
|
|
|
41 |
},
|
42 |
{
|
43 |
"cell_type": "code",
|
44 |
+
"execution_count": null,
|
45 |
"id": "c107f724",
|
46 |
"metadata": {},
|
47 |
"outputs": [
|
|
|
85 |
" <tbody>\n",
|
86 |
" <tr>\n",
|
87 |
" <td>0</td>\n",
|
88 |
+
" <td>0.209574</td>\n",
|
89 |
+
" <td>0.081121</td>\n",
|
90 |
+
" <td>0.022327</td>\n",
|
91 |
+
" <td>00:24</td>\n",
|
92 |
" </tr>\n",
|
93 |
" </tbody>\n",
|
94 |
"</table>"
|
|
|
140 |
" <tbody>\n",
|
141 |
" <tr>\n",
|
142 |
" <td>0</td>\n",
|
143 |
+
" <td>0.090262</td>\n",
|
144 |
+
" <td>0.056602</td>\n",
|
145 |
+
" <td>0.017591</td>\n",
|
146 |
+
" <td>00:23</td>\n",
|
147 |
" </tr>\n",
|
148 |
" <tr>\n",
|
149 |
" <td>1</td>\n",
|
150 |
+
" <td>0.035389</td>\n",
|
151 |
+
" <td>0.037754</td>\n",
|
152 |
+
" <td>0.014208</td>\n",
|
153 |
+
" <td>00:22</td>\n",
|
154 |
" </tr>\n",
|
155 |
" <tr>\n",
|
156 |
" <td>2</td>\n",
|
157 |
+
" <td>0.013607</td>\n",
|
158 |
+
" <td>0.038817</td>\n",
|
159 |
+
" <td>0.012179</td>\n",
|
160 |
+
" <td>00:22</td>\n",
|
161 |
" </tr>\n",
|
162 |
" </tbody>\n",
|
163 |
"</table>"
|
|
|
177 |
},
|
178 |
{
|
179 |
"cell_type": "code",
|
180 |
+
"execution_count": null,
|
181 |
+
"id": "bed928f3",
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [],
|
184 |
+
"source": [
|
185 |
+
"path = untar_data(URLs.PETS)/'images'\n",
|
186 |
+
"\n",
|
187 |
+
"dls = ImageDataLoaders.from_name_func('.',\n",
|
188 |
+
" get_image_files(path), valid_pct=0.2, seed=42,\n",
|
189 |
+
" label_func=is_cat,\n",
|
190 |
+
" item_tfms=Resize(192))"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "code",
|
195 |
+
"execution_count": null,
|
196 |
+
"id": "7e56b200",
|
197 |
+
"metadata": {},
|
198 |
+
"outputs": [
|
199 |
+
{
|
200 |
+
"data": {
|
201 |
+
"text/html": [
|
202 |
+
"\n",
|
203 |
+
"<style>\n",
|
204 |
+
" /* Turns off some styling */\n",
|
205 |
+
" progress {\n",
|
206 |
+
" /* gets rid of default border in Firefox and Opera. */\n",
|
207 |
+
" border: none;\n",
|
208 |
+
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
|
209 |
+
" background-size: auto;\n",
|
210 |
+
" }\n",
|
211 |
+
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
|
212 |
+
" background: #F44336;\n",
|
213 |
+
" }\n",
|
214 |
+
"</style>\n"
|
215 |
+
],
|
216 |
+
"text/plain": [
|
217 |
+
"<IPython.core.display.HTML object>"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
"metadata": {},
|
221 |
+
"output_type": "display_data"
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"data": {
|
225 |
+
"text/html": [
|
226 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
227 |
+
" <thead>\n",
|
228 |
+
" <tr style=\"text-align: left;\">\n",
|
229 |
+
" <th>epoch</th>\n",
|
230 |
+
" <th>train_loss</th>\n",
|
231 |
+
" <th>valid_loss</th>\n",
|
232 |
+
" <th>error_rate</th>\n",
|
233 |
+
" <th>time</th>\n",
|
234 |
+
" </tr>\n",
|
235 |
+
" </thead>\n",
|
236 |
+
" <tbody>\n",
|
237 |
+
" <tr>\n",
|
238 |
+
" <td>0</td>\n",
|
239 |
+
" <td>0.184049</td>\n",
|
240 |
+
" <td>0.038403</td>\n",
|
241 |
+
" <td>0.010825</td>\n",
|
242 |
+
" <td>00:21</td>\n",
|
243 |
+
" </tr>\n",
|
244 |
+
" </tbody>\n",
|
245 |
+
"</table>"
|
246 |
+
],
|
247 |
+
"text/plain": [
|
248 |
+
"<IPython.core.display.HTML object>"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
"metadata": {},
|
252 |
+
"output_type": "display_data"
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"data": {
|
256 |
+
"text/html": [
|
257 |
+
"\n",
|
258 |
+
"<style>\n",
|
259 |
+
" /* Turns off some styling */\n",
|
260 |
+
" progress {\n",
|
261 |
+
" /* gets rid of default border in Firefox and Opera. */\n",
|
262 |
+
" border: none;\n",
|
263 |
+
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
|
264 |
+
" background-size: auto;\n",
|
265 |
+
" }\n",
|
266 |
+
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
|
267 |
+
" background: #F44336;\n",
|
268 |
+
" }\n",
|
269 |
+
"</style>\n"
|
270 |
+
],
|
271 |
+
"text/plain": [
|
272 |
+
"<IPython.core.display.HTML object>"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
"metadata": {},
|
276 |
+
"output_type": "display_data"
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"data": {
|
280 |
+
"text/html": [
|
281 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
282 |
+
" <thead>\n",
|
283 |
+
" <tr style=\"text-align: left;\">\n",
|
284 |
+
" <th>epoch</th>\n",
|
285 |
+
" <th>train_loss</th>\n",
|
286 |
+
" <th>valid_loss</th>\n",
|
287 |
+
" <th>error_rate</th>\n",
|
288 |
+
" <th>time</th>\n",
|
289 |
+
" </tr>\n",
|
290 |
+
" </thead>\n",
|
291 |
+
" <tbody>\n",
|
292 |
+
" <tr>\n",
|
293 |
+
" <td>0</td>\n",
|
294 |
+
" <td>0.075693</td>\n",
|
295 |
+
" <td>0.042666</td>\n",
|
296 |
+
" <td>0.013532</td>\n",
|
297 |
+
" <td>00:24</td>\n",
|
298 |
+
" </tr>\n",
|
299 |
+
" <tr>\n",
|
300 |
+
" <td>1</td>\n",
|
301 |
+
" <td>0.038955</td>\n",
|
302 |
+
" <td>0.018082</td>\n",
|
303 |
+
" <td>0.006089</td>\n",
|
304 |
+
" <td>00:22</td>\n",
|
305 |
+
" </tr>\n",
|
306 |
+
" <tr>\n",
|
307 |
+
" <td>2</td>\n",
|
308 |
+
" <td>0.016343</td>\n",
|
309 |
+
" <td>0.018480</td>\n",
|
310 |
+
" <td>0.004736</td>\n",
|
311 |
+
" <td>00:24</td>\n",
|
312 |
+
" </tr>\n",
|
313 |
+
" </tbody>\n",
|
314 |
+
"</table>"
|
315 |
+
],
|
316 |
+
"text/plain": [
|
317 |
+
"<IPython.core.display.HTML object>"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
"metadata": {},
|
321 |
+
"output_type": "display_data"
|
322 |
+
}
|
323 |
+
],
|
324 |
+
"source": [
|
325 |
+
"learn = vision_learner(dls, resnet18, metrics=error_rate).to_fp16()\n",
|
326 |
+
"learn.fine_tune(3)"
|
327 |
+
]
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"cell_type": "code",
|
331 |
+
"execution_count": null,
|
332 |
"id": "5171c7fc",
|
333 |
"metadata": {},
|
334 |
"outputs": [],
|
|
|
338 |
},
|
339 |
{
|
340 |
"cell_type": "code",
|
341 |
+
"execution_count": null,
|
342 |
"id": "3295ef11",
|
343 |
"metadata": {},
|
344 |
"outputs": [
|
|
|
349 |
"PILImage mode=RGB size=192x191"
|
350 |
]
|
351 |
},
|
352 |
+
"execution_count": null,
|
353 |
"metadata": {},
|
354 |
"output_type": "execute_result"
|
355 |
}
|
|
|
362 |
},
|
363 |
{
|
364 |
"cell_type": "code",
|
365 |
+
"execution_count": null,
|
366 |
"id": "ae2bc6ac",
|
367 |
"metadata": {},
|
368 |
"outputs": [],
|
369 |
"source": [
|
370 |
+
"#|export\n",
|
371 |
"learn = load_learner('model.pkl')"
|
372 |
]
|
373 |
},
|
374 |
{
|
375 |
"cell_type": "code",
|
376 |
+
"execution_count": null,
|
377 |
"id": "6e0bf9da",
|
378 |
+
"metadata": {},
|
|
|
|
|
379 |
"outputs": [
|
380 |
{
|
381 |
"data": {
|
|
|
414 |
{
|
415 |
"data": {
|
416 |
"text/plain": [
|
417 |
+
"('False', TensorBase(0), TensorBase([9.9999e-01, 8.4523e-06]))"
|
418 |
]
|
419 |
},
|
420 |
+
"execution_count": null,
|
421 |
"metadata": {},
|
422 |
"output_type": "execute_result"
|
423 |
}
|
|
|
428 |
},
|
429 |
{
|
430 |
"cell_type": "code",
|
431 |
+
"execution_count": null,
|
432 |
"id": "0419ed3a",
|
433 |
"metadata": {},
|
434 |
"outputs": [],
|
435 |
"source": [
|
436 |
+
"#|export\n",
|
437 |
"categories = ('Dog', 'Cat')\n",
|
438 |
"\n",
|
439 |
"def classify_image(img):\n",
|
|
|
443 |
},
|
444 |
{
|
445 |
"cell_type": "code",
|
446 |
+
"execution_count": null,
|
447 |
"id": "762dec00",
|
448 |
"metadata": {},
|
449 |
"outputs": [
|
|
|
484 |
{
|
485 |
"data": {
|
486 |
"text/plain": [
|
487 |
+
"{'Dog': 0.9999915361404419, 'Cat': 8.452258043689653e-06}"
|
488 |
]
|
489 |
},
|
490 |
+
"execution_count": null,
|
491 |
"metadata": {},
|
492 |
"output_type": "execute_result"
|
493 |
}
|
|
|
498 |
},
|
499 |
{
|
500 |
"cell_type": "code",
|
501 |
+
"execution_count": null,
|
502 |
"id": "0518a30a",
|
503 |
+
"metadata": {},
|
|
|
|
|
504 |
"outputs": [
|
505 |
{
|
506 |
"name": "stdout",
|
|
|
511 |
"To create a public link, set `share=True` in `launch()`.\n"
|
512 |
]
|
513 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
{
|
515 |
"data": {
|
516 |
"text/plain": [
|
517 |
+
"(<fastapi.applications.FastAPI at 0x7fa03ba47670>,\n",
|
518 |
" 'http://127.0.0.1:7860/',\n",
|
519 |
" None)"
|
520 |
]
|
521 |
},
|
522 |
+
"execution_count": null,
|
523 |
"metadata": {},
|
524 |
"output_type": "execute_result"
|
525 |
}
|
526 |
],
|
527 |
"source": [
|
528 |
+
"#|export\n",
|
529 |
"image = gr.inputs.Image(shape=(192, 192))\n",
|
530 |
"label = gr.outputs.Label()\n",
|
531 |
"examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']\n",
|
532 |
"\n",
|
533 |
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
534 |
+
"intf.launch(inline=False)"
|
535 |
]
|
536 |
},
|
537 |
{
|
538 |
+
"cell_type": "markdown",
|
539 |
+
"id": "0d1e90ce",
|
|
|
540 |
"metadata": {},
|
|
|
541 |
"source": [
|
542 |
+
"## end -"
|
|
|
|
|
543 |
]
|
544 |
},
|
545 |
{
|
546 |
"cell_type": "code",
|
547 |
+
"execution_count": null,
|
548 |
+
"id": "82774c08",
|
549 |
"metadata": {},
|
550 |
"outputs": [],
|
551 |
"source": [
|
552 |
+
"from nbdev.export import notebook2script"
|
|
|
|
|
|
|
|
|
|
|
|
|
553 |
]
|
554 |
},
|
555 |
{
|
556 |
"cell_type": "code",
|
557 |
+
"execution_count": null,
|
558 |
+
"id": "7a880da1",
|
559 |
+
"metadata": {},
|
|
|
|
|
560 |
"outputs": [
|
561 |
{
|
562 |
+
"name": "stdout",
|
563 |
+
"output_type": "stream",
|
564 |
+
"text": [
|
565 |
+
"Converted app.ipynb.\n"
|
566 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
567 |
}
|
568 |
],
|
569 |
"source": [
|
570 |
+
"notebook2script('app.ipynb')"
|
|
|
|
|
571 |
]
|
572 |
},
|
573 |
{
|
574 |
"cell_type": "code",
|
575 |
"execution_count": null,
|
576 |
+
"id": "1a349335",
|
577 |
"metadata": {},
|
578 |
"outputs": [],
|
579 |
"source": []
|
|
|
584 |
"display_name": "Python 3 (ipykernel)",
|
585 |
"language": "python",
|
586 |
"name": "python3"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
587 |
}
|
588 |
},
|
589 |
"nbformat": 4,
|
app.py
CHANGED
@@ -24,4 +24,4 @@ label = gr.outputs.Label()
|
|
24 |
examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']
|
25 |
|
26 |
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
27 |
-
intf.launch()
|
|
|
24 |
examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']
|
25 |
|
26 |
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
27 |
+
intf.launch(inline=False)
|
model.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46eee60a5eac1402f8402ce1915230e6ca75d8d05c35c4e9500eadf2e39c525a
|
3 |
+
size 47062827
|