Spaces:
Runtime error
Runtime error
| import random | |
| import numpy as np | |
| from torch.utils import data | |
| from .dataset_t2m import Text2MotionDataset | |
| import codecs as cs | |
| from os.path import join as pjoin | |
| class Text2MotionDatasetM2T(data.Dataset): | |
| def __init__( | |
| self, | |
| data_root, | |
| split, | |
| mean, | |
| std, | |
| max_motion_length=196, | |
| min_motion_length=40, | |
| unit_length=4, | |
| fps=20, | |
| tmpFile=True, | |
| tiny=False, | |
| debug=False, | |
| **kwargs, | |
| ): | |
| self.max_motion_length = max_motion_length | |
| self.min_motion_length = min_motion_length | |
| self.unit_length = unit_length | |
| # Data mean and std | |
| self.mean = mean | |
| self.std = std | |
| # Data path | |
| split_file = pjoin(data_root, split + '.txt') | |
| motion_dir = pjoin(data_root, 'new_joint_vecs') | |
| text_dir = pjoin(data_root, 'texts') | |
| # Data id list | |
| self.id_list = [] | |
| with cs.open(split_file, "r") as f: | |
| for line in f.readlines(): | |
| self.id_list.append(line.strip()) | |
| new_name_list = [] | |
| length_list = [] | |
| data_dict = {} | |
| for name in self.id_list: | |
| # try: | |
| motion = np.load(pjoin(motion_dir, name + '.npy')) | |
| if (len(motion)) < self.min_motion_length or (len(motion) >= 200): | |
| continue | |
| text_data = [] | |
| flag = False | |
| with cs.open(pjoin(text_dir, name + '.txt')) as f: | |
| for line in f.readlines(): | |
| text_dict = {} | |
| line_split = line.strip().split('#') | |
| caption = line_split[0] | |
| tokens = line_split[1].split(' ') | |
| f_tag = float(line_split[2]) | |
| to_tag = float(line_split[3]) | |
| f_tag = 0.0 if np.isnan(f_tag) else f_tag | |
| to_tag = 0.0 if np.isnan(to_tag) else to_tag | |
| text_dict['caption'] = caption | |
| text_dict['tokens'] = tokens | |
| if f_tag == 0.0 and to_tag == 0.0: | |
| flag = True | |
| text_data.append(text_dict) | |
| else: | |
| try: | |
| n_motion = motion[int(f_tag*20) : int(to_tag*20)] | |
| if (len(n_motion)) < min_motion_length or (len(n_motion) >= 200): | |
| continue | |
| new_name = "%s_%f_%f"%(name, f_tag, to_tag) | |
| data_dict[new_name] = {'motion': n_motion, | |
| 'length': len(n_motion), | |
| 'text':[text_dict]} | |
| new_name_list.append(new_name) | |
| except: | |
| print(line_split) | |
| print(line_split[2], line_split[3], f_tag, to_tag, name) | |
| if flag: | |
| data_dict[name] = {'motion': motion, | |
| 'length': len(motion), | |
| 'name': name, | |
| 'text': text_data} | |
| new_name_list.append(name) | |
| length_list.append(len(motion)) | |
| # except: | |
| # # Some motion may not exist in KIT dataset | |
| # pass | |
| self.length_arr = np.array(length_list) | |
| self.data_dict = data_dict | |
| self.name_list = new_name_list | |
| self.nfeats = motion.shape[-1] | |
| def __len__(self): | |
| return len(self.data_dict) | |
| def __getitem__(self, item): | |
| name = self.name_list[item] | |
| data = self.data_dict[name] | |
| motion, m_length = data['motion'], data['length'] | |
| "Z Normalization" | |
| motion = (motion - self.mean) / self.std | |
| return name, motion, m_length, True, True, True, True, True, True | |