|
import re |
|
|
|
from g2p_en import G2p |
|
|
|
from style_bert_vits2.constants import Languages |
|
from style_bert_vits2.nlp import bert_models |
|
from style_bert_vits2.nlp.english.cmudict import get_dict |
|
from style_bert_vits2.nlp.symbols import PUNCTUATIONS, SYMBOLS |
|
|
|
|
|
|
|
ARPA = { |
|
"AH0", |
|
"S", |
|
"AH1", |
|
"EY2", |
|
"AE2", |
|
"EH0", |
|
"OW2", |
|
"UH0", |
|
"NG", |
|
"B", |
|
"G", |
|
"AY0", |
|
"M", |
|
"AA0", |
|
"F", |
|
"AO0", |
|
"ER2", |
|
"UH1", |
|
"IY1", |
|
"AH2", |
|
"DH", |
|
"IY0", |
|
"EY1", |
|
"IH0", |
|
"K", |
|
"N", |
|
"W", |
|
"IY2", |
|
"T", |
|
"AA1", |
|
"ER1", |
|
"EH2", |
|
"OY0", |
|
"UH2", |
|
"UW1", |
|
"Z", |
|
"AW2", |
|
"AW1", |
|
"V", |
|
"UW2", |
|
"AA2", |
|
"ER", |
|
"AW0", |
|
"UW0", |
|
"R", |
|
"OW1", |
|
"EH1", |
|
"ZH", |
|
"AE0", |
|
"IH2", |
|
"IH", |
|
"Y", |
|
"JH", |
|
"P", |
|
"AY1", |
|
"EY0", |
|
"OY2", |
|
"TH", |
|
"HH", |
|
"D", |
|
"ER0", |
|
"CH", |
|
"AO1", |
|
"AE1", |
|
"AO2", |
|
"OY1", |
|
"AY2", |
|
"IH1", |
|
"OW0", |
|
"L", |
|
"SH", |
|
} |
|
_g2p = G2p() |
|
eng_dict = get_dict() |
|
|
|
|
|
def g2p(text: str) -> tuple[list[str], list[int], list[int]]: |
|
phones = [] |
|
tones = [] |
|
phone_len = [] |
|
words = __text_to_words(text) |
|
|
|
for word in words: |
|
temp_phones, temp_tones = [], [] |
|
if len(word) > 1 and "'" in word: |
|
word = ["".join(word)] |
|
|
|
for w in word: |
|
if w in PUNCTUATIONS: |
|
temp_phones.append(w) |
|
temp_tones.append(0) |
|
continue |
|
if w.upper() in eng_dict: |
|
phns, tns = __refine_syllables(eng_dict[w.upper()]) |
|
temp_phones += [__post_replace_ph(i) for i in phns] |
|
temp_tones += tns |
|
else: |
|
phone_list = list(filter(lambda p: p != " ", _g2p(w))) |
|
phns, tns = [], [] |
|
for ph in phone_list: |
|
if ph in ARPA: |
|
ph, tn = __refine_ph(ph) |
|
phns.append(ph) |
|
tns.append(tn) |
|
else: |
|
phns.append(ph) |
|
tns.append(0) |
|
temp_phones += [__post_replace_ph(i) for i in phns] |
|
temp_tones += tns |
|
|
|
phones += temp_phones |
|
tones += temp_tones |
|
phone_len.append(len(temp_phones)) |
|
|
|
word2ph = [] |
|
for token, pl in zip(words, phone_len): |
|
word_len = len(token) |
|
word2ph += __distribute_phone(pl, word_len) |
|
|
|
phones = ["_"] + phones + ["_"] |
|
tones = [0] + tones + [0] |
|
word2ph = [1] + word2ph + [1] |
|
assert len(phones) == len(tones), text |
|
assert len(phones) == sum(word2ph), text |
|
|
|
return phones, tones, word2ph |
|
|
|
|
|
def __post_replace_ph(ph: str) -> str: |
|
REPLACE_MAP = { |
|
":": ",", |
|
";": ",", |
|
",": ",", |
|
"。": ".", |
|
"!": "!", |
|
"?": "?", |
|
"\n": ".", |
|
"·": ",", |
|
"、": ",", |
|
"…": "...", |
|
"···": "...", |
|
"・・・": "...", |
|
"v": "V", |
|
} |
|
if ph in REPLACE_MAP: |
|
ph = REPLACE_MAP[ph] |
|
if ph in SYMBOLS: |
|
return ph |
|
return "UNK" |
|
|
|
|
|
def __refine_ph(phn: str) -> tuple[str, int]: |
|
tone = 0 |
|
if re.search(r"\d$", phn): |
|
tone = int(phn[-1]) + 1 |
|
phn = phn[:-1] |
|
else: |
|
tone = 3 |
|
return phn.lower(), tone |
|
|
|
|
|
def __refine_syllables(syllables: list[list[str]]) -> tuple[list[str], list[int]]: |
|
tones = [] |
|
phonemes = [] |
|
for phn_list in syllables: |
|
for phn in phn_list: |
|
phn, tone = __refine_ph(phn) |
|
phonemes.append(phn) |
|
tones.append(tone) |
|
return phonemes, tones |
|
|
|
|
|
def __distribute_phone(n_phone: int, n_word: int) -> list[int]: |
|
phones_per_word = [0] * n_word |
|
for task in range(n_phone): |
|
min_tasks = min(phones_per_word) |
|
min_index = phones_per_word.index(min_tasks) |
|
phones_per_word[min_index] += 1 |
|
return phones_per_word |
|
|
|
|
|
def __text_to_words(text: str) -> list[list[str]]: |
|
tokenizer = bert_models.load_tokenizer(Languages.EN) |
|
tokens = tokenizer.tokenize(text) |
|
words = [] |
|
for idx, t in enumerate(tokens): |
|
if t.startswith("▁"): |
|
words.append([t[1:]]) |
|
elif t in PUNCTUATIONS: |
|
if idx == len(tokens) - 1: |
|
words.append([f"{t}"]) |
|
elif ( |
|
not tokens[idx + 1].startswith("▁") |
|
and tokens[idx + 1] not in PUNCTUATIONS |
|
): |
|
if idx == 0: |
|
words.append([]) |
|
words[-1].append(f"{t}") |
|
else: |
|
words.append([f"{t}"]) |
|
else: |
|
if idx == 0: |
|
words.append([]) |
|
words[-1].append(f"{t}") |
|
return words |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder.")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|