hongaik's picture
initial test
54b3a40
import streamlit as st
import pandas as pd
from docxtpl import DocxTemplate, InlineImage
from docx.shared import Mm, Inches
import datetime
from datetime import timedelta, date
import io
# from utils import *
########## Title for the Web App ##########
st.title("Report Generator")
########## Create Input field ##########
# feedback = st.text_input('Type your text here', 'Customer suggested that the customer service needs to be improved and the response time needs to be improved.')
# if st.button('Click for predictions!'):
# with st.spinner('Generating predictions...'):
# topics_prob, sentiment_prob, touchpoint_prob = get_single_prediction(feedback)
# bar_topic = px.bar(topics_prob, x='probability', y='topic')
# bar_touchpoint = px.bar(touchpoint_prob, x='probability', y='touchpoint')
# pie = px.pie(sentiment_prob,
# values='probability',
# names='sentiment',
# color_discrete_map={'positive':'rgb(0, 204, 0)',
# 'negative':'rgb(215, 11, 11)'
# },
# color='sentiment'
# )
# st.plotly_chart(bar_topic, use_container_width=True)
# st.plotly_chart(bar_touchpoint, use_container_width=True)
# st.plotly_chart(pie, use_container_width=True)
# st.write("\n")
# st.subheader('Or... Upload a csv file if you have a file instead.')
# st.write("\n")
# st.download_button(
# label="Download sample file here",
# data=sample_file,
# file_name='sample_data.csv',
# mime='text/csv',
# )
uploaded_files = st.file_uploader("Upload multiple files", accept_multiple_files=True)
if len(uploaded_files) > 0:
# with st.spinner('Generating report...'):
for uploaded_file in uploaded_files:
if uploaded_file.name == 'Flip_accum.xlsx':
flip_accum1 = pd.read_excel(uploaded_file, skiprows=8, nrows=11, usecols="A:D")
flip_accum2 = pd.read_excel(uploaded_file, skiprows=24, nrows=5, usecols="A:N")
#st.write('flip_accum1: ' + str(flip_accum1.shape))
elif uploaded_file.name == 'Fold_accum.xlsx':
fold_accum1 = pd.read_excel(uploaded_file, skiprows=8, nrows=11, usecols="A:D")
fold_accum2 = pd.read_excel(uploaded_file, skiprows=24, nrows=5, usecols="A:N")
#st.write('fold_accum1: ' + str(fold_accum1.shape))
elif uploaded_file.name == 'Flip_today.xlsx':
flip_today1 = pd.read_excel(uploaded_file, skiprows=8, nrows=11, usecols="A:D")
flip_today2 = pd.read_excel(uploaded_file, skiprows=24, nrows=5, usecols="A:M")
#st.write('flip_today1: ' + str(flip_today1.shape))
elif uploaded_file.name == 'Fold_today.xlsx':
fold_today1 = pd.read_excel(uploaded_file, skiprows=8, nrows=11, usecols="A:D")
fold_today2 = pd.read_excel(uploaded_file, skiprows=24, nrows=5, usecols="A:M")
#st.write('fold_today1: ' + str(fold_today1.shape))
elif uploaded_file.name == 'FlipFold4_accum.xlsx':
flipfold_accum = pd.read_excel(uploaded_file, skiprows=8, nrows=11, usecols="A:D")
flipfold_accum2 = pd.read_excel(uploaded_file, skiprows=24, nrows=5, usecols="A:N")
#st.write('flipfold_accum2: ' + str(flipfold_accum2.shape))
elif uploaded_file.name == 'FlipFold4_analysis.xlsx':
flipfold = pd.read_excel(uploaded_file, skiprows=9)
#st.write('flipfold: ' + str(flipfold.shape))
elif uploaded_file.name == 'flipfold4_report_template.docx':
doc = DocxTemplate(uploaded_file)
if datetime.datetime.now().day == 1:
day_suffix = "st"
elif datetime.datetime.now().day == 2:
day_suffix = "nd"
elif datetime.datetime.now().day == 3:
day_suffix = "rd"
else:
day_suffix = "th"
if round(((flipfold_accum2.iloc[2, 4] - flipfold_accum2.iloc[2, 13])/flipfold_accum2.iloc[2, 13]) * 100) < 0:
increase_decrease = "Decrease"
else:
increase_decrease = "Increase"
flipfold = flipfold[['Symptom\nGroup 1', 'Subsidiary', 'Marketing Name']]
flipfold.columns = ['symptom', 'subsidiary', 'Marketing Name']
display = ['Display', 'Touch', 'OCTA/Backglass Broken', 'Sensor']
quick_discharge = ['Quick Discharge', 'Charging', 'Discharging']
appearance = ['Appearance', 'Case', 'Button']
others = ['In Process', 'WIFI', 'Connection', 'S pen', 'Fault Operation', 'Bluetooth']
flipfold['symptom'] = flipfold['symptom'].apply(lambda x:
'Display' if x in display else
'Quick Discharge' if x in quick_discharge else
'Appearance' if x in appearance else
'Others' if x in others else
'Sound/Call Audio' if x == 'Sound/Call audio' else
x
)
template = pd.DataFrame({
'symptom': ['Total', 'Heat', 'Display', 'Camera', 'Quick Discharge', 'Power', 'Rebooting', 'App/SW', 'Sound/Call Audio', 'Appearance', 'Others'],
'SEAO Total': [0]*11,
'SAVINA': [0]*11,
'SEAU': [0]*11,
'SEIN': [0]*11,
'SENZ': [0]*11,
'SEPCO': [0]*11,
'SESP': [0]*11,
'SME': [0]*11,
'TSE': [0]*11
}).set_index('symptom')
flip4 = flipfold[flipfold['Marketing Name'] == 'Galaxy Z Flip4']
flip4_groupby = pd.DataFrame(flip4.groupby(['symptom', 'subsidiary'])['subsidiary'].count())
flip4_groupby.columns=['count']
flip4_groupby.reset_index(inplace=True)
flip4_groupby = flip4_groupby.pivot(index='symptom', columns='subsidiary', values='count').fillna(0)
fold4 = flipfold[flipfold['Marketing Name'] == 'Galaxy Z Fold4']
fold4_groupby = pd.DataFrame(fold4.groupby(['symptom', 'subsidiary'])['subsidiary'].count())
fold4_groupby.columns=['count']
fold4_groupby.reset_index(inplace=True)
fold4_groupby = fold4_groupby.pivot(index='symptom', columns='subsidiary', values='count').fillna(0)
template_flip4 = template.copy()
template_fold4 = template.copy()
for col in template.columns:
for row in template.index:
try:
template_flip4.loc[row, col] = flip4_groupby.loc[row, col]
except:
continue
for col in template.columns:
for row in template.index:
try:
template_fold4.loc[row, col] = fold4_groupby.loc[row, col]
except:
continue
# Account for SEPCO data entry error
template_flip4.loc['Display', 'SEPCO'] = template_flip4.loc['Display', 'SEPCO'] - 4
template_flip4.loc['App/SW', 'SEPCO'] = template_flip4.loc['App/SW', 'SEPCO'] - 2
template_flip4.loc['Others', 'SEPCO'] = template_flip4.loc['Others', 'SEPCO'] + 6
# Account for SEVT into SAVINA count
template_fold4.loc['Display', 'SAVINA'] = template_fold4.loc['Display', 'SAVINA'] + 5
template_fold4.loc['Others', 'SAVINA'] = template_fold4.loc['Others', 'SAVINA'] + 2
template_fold4.loc['Rebooting', 'SAVINA'] = template_fold4.loc['Rebooting', 'SAVINA'] + 1
template_fold4.loc['Appearance', 'SAVINA'] = template_fold4.loc['Appearance', 'SAVINA'] + 1
template_flip4.loc['Appearance', 'SAVINA'] = template_flip4.loc['Appearance', 'SAVINA'] + 1
template_flip4.loc['Others', 'SAVINA'] = template_flip4.loc['Others', 'SAVINA'] + 2
template_flip4['SEAO Total'] = template_flip4[['SAVINA', 'SEAU', 'SEIN', 'SENZ', 'SEPCO', 'SESP', 'SME', 'TSE']].sum(axis=1)
template_flip4.loc['Total'] = template_flip4[['SEAO Total', 'SAVINA', 'SEAU', 'SEIN', 'SENZ', 'SEPCO', 'SESP', 'SME', 'TSE']].sum(axis=0)
template_flip4 = template_flip4.astype(int)
template_fold4['SEAO Total'] = template_fold4[['SEAO Total', 'SAVINA', 'SEAU', 'SEIN', 'SENZ', 'SEPCO', 'SESP', 'SME', 'TSE']].sum(axis=1)
template_fold4.loc['Total'] = template_fold4[['SEAO Total', 'SAVINA', 'SEAU', 'SEIN', 'SENZ', 'SEPCO', 'SESP', 'SME', 'TSE']].sum(axis=0)
template_fold4 = template_fold4.astype(int)
flip4_dict = {'a' + str(i): template_flip4.values.flatten()[i-1] for i in range(1,100)}
fold4_dict = {'b' + str(i): template_fold4.values.flatten()[i-1] for i in range(1,100)}
context = {
#"topleft": topleft,
#"topright": topright,
#"bottomleft": bottomleft,
#"bottomright": bottomright,
"date0" : int((datetime.date.today() - date(2022, 9, 2))/ timedelta(days=1) + 1),
"date1" : datetime.datetime.now().strftime("%#d.%#m.%Y"),
"date2" : (datetime.datetime.now() - timedelta(days=1)).strftime("%#d/%#m"),
"date3": datetime.datetime.now().strftime("%b.%#d"),
"day_suffix": day_suffix,
"v2": "{:>6}".format(f'{flip_today1.iloc[5, 2] + fold_today1.iloc[5, 2]:,}'),
"v3": f'{int(flip_accum1.iloc[3, 2]):,}',
"v4": f'{int(flip_accum1.iloc[5, 2]):,}',
"v5": f'{int(flip_accum1.iloc[7, 2]):,}',
"v6": f'{int(flip_accum2.iloc[1, 12]):,}',
"v7": f'{int(flip_accum2.iloc[1, 5]):,}',
"v8": f'{int(flip_accum2.iloc[1, 6]):,}',
"v9": f'{int(fold_accum1.iloc[3, 2]):,}',
"v10": f'{int(fold_accum1.iloc[5, 2]):,}',
"v11": f'{int(fold_accum1.iloc[7, 2]):,}',
"v12": f'{int(fold_accum2.iloc[1, 12]):,}',
"v13": f'{int(fold_accum2.iloc[1, 5]):,}',
"v14": f'{int(fold_accum2.iloc[1, 6]):,}',
# "v21": f'{int(flip_today1.iloc[3, 2]):,}', # changed on 5 Sep 2022
# "v22": f'{int(flip_today1.iloc[5, 2]):,}',
# "v23": f'{int(flip_today1.iloc[7, 2]):,}',
"v21": f'{int(flip_today2.iloc[1, 12]):,}',
"v22": f'{int(flip_today2.iloc[1, 5]):,}',
"v23": f'{int(flip_today2.iloc[1, 6]):,}',
"v24": f'{int(fold_today2.iloc[1, 12]):,}',
"v25": f'{int(fold_today2.iloc[1, 5]):,}',
"v26": f'{int(fold_today2.iloc[1, 6]):,}',
# Table 1 Subtotals
"v16": f'{int(flip_accum1.iloc[7, 2] + fold_accum1.iloc[7, 2]):,}',
"v17": f'{int(flip_accum1.iloc[3, 2] + fold_accum1.iloc[3, 2]):,}',
"v18": f'{int(flip_accum2.iloc[1, 12] + fold_accum2.iloc[1, 12]):,}',
"v19": f'{int(flip_accum2.iloc[1, 5] + fold_accum2.iloc[1, 5]):,}',
"v20": f'{int(flip_accum2.iloc[1, 6] + fold_accum2.iloc[1, 6]):,}',
"v27": f'{int(flip_today2.iloc[1, 12]) + int(fold_today2.iloc[1, 12]):,}',
"v28": f'{int(flip_today2.iloc[1, 5]) + int(fold_today2.iloc[1, 5]):,}',
"v29": f'{int(flip_today2.iloc[1, 6]) + int(fold_today2.iloc[1, 6]):,}',
"v30": f'{int(flip_today2.iloc[1, 4]):,}',
"v31": f'{int(fold_today2.iloc[1, 4]):,}',
"v15": f'{int(flip_today2.iloc[1, 4]) + int(fold_today2.iloc[1, 4]):,}',
"v1": f'{int(flip_accum1.iloc[5, 2] + fold_accum1.iloc[5, 2]):,}',
"v32": f'{int(flipfold_accum2.iloc[2, 4]):,}',
"v33": f'{int(flip_accum2.iloc[2, 4]):,}',
"v34": f'{int(fold_accum2.iloc[2, 4]):,}',
"v35": f'{int(flipfold_accum2.iloc[2, 13]):,}',
"v36": f'{int(fold_accum2.iloc[2, 13]):,}',
"v37": f'{int(flip_accum2.iloc[2, 13]):,}',
"v38": abs(round(((flipfold_accum2.iloc[2, 4] - flipfold_accum2.iloc[2, 13])/flipfold_accum2.iloc[2, 13]) * 100)),
"increase_decrease": increase_decrease,
"c12": int(template_flip4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum()),
"c19": int(template_fold4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum()),
"c14": int(template_flip4.loc[['Camera', 'Others'], 'SEAO Total'].sum()),
"c21": int(template_fold4.loc[['Camera', 'Others'], 'SEAO Total'].sum()),
"c1": int(flip4_dict["a1"] + fold4_dict["b1"]),
"c2": int(flip4_dict["a19"] + fold4_dict["b19"]),
"c3": int(flip4_dict["a64"] + fold4_dict["b64"]),
"c4": int(flip4_dict["a82"] + fold4_dict["b82"]),
"c5": int(template_flip4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum() + template_fold4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum()),
"c6": int(flip4_dict["a73"] + fold4_dict["b73"]),
"c7": int(template_flip4.loc[['Camera', 'Others'], 'SEAO Total'].sum() + template_fold4.loc[['Camera', 'Others'], 'SEAO Total'].sum()),
"d1": round(100*(flip4_dict["a19"] + fold4_dict["b19"])/(flip4_dict["a1"] + fold4_dict["b1"])),
"d2": round(100*(flip4_dict["a64"] + fold4_dict["b64"])/(flip4_dict["a1"] + fold4_dict["b1"])),
"d3": round(100*(template_flip4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum() + template_fold4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum())/(flip4_dict["a1"] + fold4_dict["b1"]))
}
context2 = {**context, **flip4_dict, **fold4_dict}
doc.render(context2)
# Create in-memory buffer
file_stream = io.BytesIO()
# Save the .docx to the buffer
doc.save(file_stream)
# Reset the buffer's file-pointer to the beginning of the file
file_stream.seek(0)
#doc.save("SEAO Fold 4_Flip 4 Quality Monitoring (" + datetime.datetime.now().strftime("%#d %b") + ").docx")
st.download_button(
label="Download report here",
data=file_stream,
file_name="SEAO Fold 4_Flip 4 Quality Monitoring (" + datetime.datetime.now().strftime("%#d %b") + ").docx",
mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document'
)