Spaces:
Sleeping
Sleeping
Add application file
Browse files
app.py
CHANGED
@@ -216,11 +216,11 @@ def run():
|
|
216 |
Next, we collect the predicted tokens from both defenders’ PraaS, which are instructed using watermarked prompts, and the suspected LLM service provider.
|
217 |
We then perform a twosample t-test to determine the statistical significance of the two distributions.
|
218 |
''')
|
219 |
-
st.image('app/assets/step1_injection.jpg', caption="Phase 1: Watermark Injection")
|
220 |
-
st.image('app/assets/step2_verification.jpg', caption="Phase 2: Watermark Verification")
|
221 |
|
222 |
st.markdown('''## Demo''')
|
223 |
-
st.image('app/assets/example.jpg', caption="Verification Example")
|
224 |
|
225 |
st.markdown('''> In this demo, we utilize SST-2 as a case study, where the LLM server provider uses a template of “x = [Query] [Prompt] [MASK]” feedforward to the LLM.
|
226 |
During watermark verification phase, the verifier inserts a trigger into the Query, thus the final template is “x = [Query] [Trigger] [Prompt] [MASK]”.''')
|
@@ -280,7 +280,7 @@ def run():
|
|
280 |
width: 100%;
|
281 |
}
|
282 |
</style>''', unsafe_allow_html=True)
|
283 |
-
st.image('app/assets/logo.png', caption="浙江大学网络空间安全学院", width=400)
|
284 |
|
285 |
|
286 |
if __name__ == '__main__':
|
|
|
216 |
Next, we collect the predicted tokens from both defenders’ PraaS, which are instructed using watermarked prompts, and the suspected LLM service provider.
|
217 |
We then perform a twosample t-test to determine the statistical significance of the two distributions.
|
218 |
''')
|
219 |
+
st.image('https://raw.githubusercontent.com/grasses/PromptCARE/master/app/assets/step1_injection.jpg', caption="Phase 1: Watermark Injection")
|
220 |
+
st.image('https://raw.githubusercontent.com/grasses/PromptCARE/master/app/assets/step2_verification.jpg', caption="Phase 2: Watermark Verification")
|
221 |
|
222 |
st.markdown('''## Demo''')
|
223 |
+
st.image('https://raw.githubusercontent.com/grasses/PromptCARE/master/app/assets/example.jpg', caption="Verification Example")
|
224 |
|
225 |
st.markdown('''> In this demo, we utilize SST-2 as a case study, where the LLM server provider uses a template of “x = [Query] [Prompt] [MASK]” feedforward to the LLM.
|
226 |
During watermark verification phase, the verifier inserts a trigger into the Query, thus the final template is “x = [Query] [Trigger] [Prompt] [MASK]”.''')
|
|
|
280 |
width: 100%;
|
281 |
}
|
282 |
</style>''', unsafe_allow_html=True)
|
283 |
+
st.image('https://raw.githubusercontent.com/grasses/PromptCARE/master/app/assets/logo.png', caption="浙江大学网络空间安全学院", width=400)
|
284 |
|
285 |
|
286 |
if __name__ == '__main__':
|